求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.
设20阶实矩阵A满足eA=I20,且A在复数域上的所有特征值模长均不超过20,则这样的互不相似的A有______个.
令A,B,C,D,E,F是三阶实方阵,且=.已知A=,B=且C=A+B-I,则[|detF|]=______.
给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?
复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.
函数f:R→R满足,对任意x∈R,存在ε>0使得f在(x-ε,x+ε)上恒等于某个多项式函数,问:f是否一定为多项式函数?
设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).
如图,正方形ABCD的边长为3,则∙=__________.
在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF//AB交AC于点F,则|2+|的值为__________;(+)∙最小值为__________.
已知平面向量,,(≠0)满足| |=1,| |=2,∙=0,(- )∙=0.记向量在,方向上的投影分别为x,y,-在方向的投影为z,则x2+y2+z2的最小值为________.
在△ABC中,点D在边AB上,BD=2DA.记=m,=n,则=【 】
已知a→=(3,4),b→=(1,0),c→=a→+tb→,若<a→,c→>=<b→,c→>,则t=【 】
设向量a,b的夹角的余弦值为1/3,且|a|=1,|b|=3,则(2a+b)⋅b=_________.
已知向量a=(m,3),b=(1,m+1).若a⊥b,则m=__________.
已知向量a,b满足|a|=1,|b|=√3,|a-2b|=3,则a⋅b=【 】
已知向量a=(2,1),b=(-2,4),则|a-b|=【 】
在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则(PA)⋅(PB)的取值范围是【 】