计算题(1977年 安徽省

化简

答案解析

暂无答案

讨论

求所有的n∈N*,使得存在n阶实矩阵A,B,满足对任意的n维非零实向量v,Av,Bv线性无关.

给定素数p和正整数 n(n≥2).A为n个p阶循环群的直和.问:至少需要几个A的真子群,才能使他们的并集能覆盖A?

复矩阵A与A的任意正整数次常相似.(1)证明:A的特征值为0或 1;(2)求A的若当标准型.

若下式(x+p)(x+2q)+(x+2p)(x+q)为含有x的整平方式,则9p²-14pq+9q²=0.

证=(a+b+c)³.

河北工业大学行列式

A polynomial P with integer coefficients is square-free if it is not expressible in the form P=Q² R, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let Pn be the set of polynomials of the form1+a1 x+a2 x²+⋯+an xnwith a1,a2,⋯,an∈{0,1}. Prove that there exists an integer N so that, for all integers n>N, more than 99% of the polynomials in Pn are square-free.【译】我们称整系数多项式P是无平方因子的,如果其不能表示为P=Q² R的形式,这里Q,R为整系数多项式且Q不为常数.对于正整数n,记Pn为如下 形式的多项式组成的集合:1+a1 x+a2 x²+⋯+an xn这里a1,a2,⋯,an∈{0,1}.证明:存在整数N,使得对任意的整数n≥N,Pn中超过99%的多项式都是无平方因子的.

令A,B,C,D,E,F是三阶实方阵,且=.已知A=,B=且C=A+B-I,则[|detF|]=______.

设20阶实矩阵A满足eA=I20,且A在复数域上的所有特征值模长均不超过20,则这样的互不相似的A有______个.

有理数加群(Q,+),记所有分母不超过10的有理数构成的子集为G,其对应的陪集GZ记为G ̅,则Q/Z包含G ̅的最小子群的阶为______.