证明题(2024年罗马尼亚

A polynomial P with integer coefficients is square-free if it is not expressible in the form P=Q² R, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let Pn be the set of polynomials of the form

1+a1 x+a2 x²+⋯+an xn

with a1,a2,⋯,an∈{0,1}. Prove that there exists an integer N so that, for all integers n>N, more than 99% of the polynomials in Pn are square-free.

【译】我们称整系数多项式P是无平方因子的,如果其不能表示为P=Q² R的形式,这里Q,R为整系数多项式且Q不为常数.对于正整数n,记Pn为如下 形式的多项式组成的集合:

1+a1 x+a2 x²+⋯+an xn

这里a1,a2,⋯,an∈{0,1}.证明:存在整数N,使得对任意的整数n≥N,Pn中超过99%的多项式都是无平方因子的.

答案解析

暂无答案

讨论

Let BC be a fixed segment in the plane, and let A be a variable point in the plane not on the line BC. Distinct points X and Y are chosen on the rays (CA) ⃗ and (BA) ⃗, respectively, such that ∠CBX=∠YCB=∠BAC.Assume that the tangents to the circumcircle of ABC at B and C meet line XY at P and Q, respectively, such that the points X,P,Y, and Q are pairwise distinct and lie on the same side of BC. Let Ω1 be the circle through X and Y centred on BC. Similarly let Ω2 be the circle through Y and Q centred on BC. Prove that Ω1 and Ω2 intersect at two fixed points as A varies.【译】在同一平面内,BC为给定线段,动点A不在直线BC上. X和Y分别为射线(CA) ⃗,射线(BA) ⃗上不重合的两点,满足∠CBX=∠YCB=∠BAC.若三角形ABC外接圆在点B和C处的切线分别交直线XY于点P和点Q,点X,P,Y,Q不重合,且位于直线BC同侧.圆Ω1经过点X,P且圆心在BC上.类地,圆Ω2经过点Y,Q且圆心在BC上.证明:当点A运动时,圆Ω1和圆Ω2始终交于两定点.

Fix integers a and b greater than 1. For any positive integer n, let rn be the (non-negative) remainder that bn leaves upon division by an. Assume there exists a positive integer N such that rn<2n/n for all integers n≥N.Prove that a divides b.给定大于1的整数a和b.对任意的正整数n,记rn为bn除以an的非负余数.若存在正整数N,使得对任意的n≥N,都有rn<2n/n.证明:a整除b.

Given a positive integer n, a set S is n-admissible if①each element of S is an unordered triple of integers in {1,2,⋯,n},②|S|=n-2,and③for each 1≤k≤n-2 and each choice of k distinct A1,A2,⋯,Ak∈S,|A1∪A2∪⋯∪Ak |≥k+2Is it true that, for all n>3 and for each n-admissible set S, there exist pairwise distinct points P1,P2,⋯,Pn in the plane such that the angles of the triangle Pi Pj Pk are all less than 61° for any triple {i,j,k} in S?【译】给定正整数n,称集合S是n-可行,如果其满足以下条件:①S的每个元素都是{1,2,⋯,n}的三元子集;②|S|=n-2;③对任意的1≤k≤n-2和任意k个互不相同的A1,A2,⋯,Ak∈S,都有|A1∪A2∪⋯∪Ak |≥k+2判断以下命题是否为真:对所有n>3和所有的n-可行集合S,在平面内总存在n个互不相同的点P1,P2,⋯,Pn,使得对集合S中任意元素{i,j,k},三角形Pi Pj Pk的每个内角都小于61°.

Consider an odd prime p and a positive integer N<50p. Let a1,a2,⋯,aN be a list of positive integers less than p such that any specific value occurs at most 51/100 N times and a1,a2,⋯,aN is not divisible by p. Prove that there exists a permutation b1,b2,⋯,bN of the a_i such that, for all k=1,2,⋯,N, the sum b1+b2+⋯+bk is not divisible by p.【译】已知奇素数p和正整数N<50p.设a1,a2,⋯,aN是一些小于p的正整数,同一数值至多出现51/100 N次,且a1+a2+⋯+aN不能被p整除.证明:存在a_i的一个排列:b1,b2,⋯,bN,使得对任意的k=1,2,⋯,N,都有b1+b2+⋯+bk不能被p整除.

Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a 2n×2n chessboard; those bishops are numbered from 1 to 2n ,from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:each bishop moves diagonally, in a straight line, some number of squares, andat the end of the jump, the bishops all stand in different squares of the same row.Find the total number of permutations σ of the numbers 1,2,⋯,2n with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order σ(1),σ(2),⋯,σ(2n ), from left to right.【译】设n是正整数.最开始在一个2n×2n的方格棋盘上的第一行的每个小方格内均放置一枚“象”,这些“象”从左到右依次编号:1,2,⋯,2n.定义一次“跳跃”操作为同时移动所有的“象”并满足如下条件:每一枚“象”可沿对角线方向移动任意方格;在这次“跳跃”操作结束时,所有的“象”恰在同一行的不同方格.求满足下列条件的数1,2,⋯,2n的排列σ的总个数:存在一系列的“跳跃”操作,使得结束时所有的“象”都在棋盘的最后一行,并且从左到右编号依次为:σ(1),σ(2),⋯,σ(2n ).

Let m<n be positive integers. Start with n piles, each of m objects. Repeatedly carry out the following operation: choose two piles and remove n objects in total from the two piles. For which (m ,n) is it possible to empty all the piles?【译】设正整数m<n.起初一共有n 堆石子,每堆有 m块石子. 重复执行以下操作: 选择两堆石子,从这两堆中移除共n 块石子.问:对于怎样的 (m , n),可以移除所有石子?

Let ABC be an acute-angled triangle with AB > AC. Let P be the intersection of the tangents to the circumcircle of ABC at B and C. The line through the midpoints of line segments PB and PC meets lines AB and AC at X and Y respectively.Prove that the quadrilateral AXPY is cyclic.【译】在锐角三角形ABC中,AB>AC,△ABC的外接圆在点B和点C处的切线交于点P.一条同时过PB和PC中点的直线与AB,AC分别交于点X,Y.求证:A,X,P,Y四点共圆.

Find all functions f from the integers to the integers such that for all integers n:2f(f(n))=5f(n)-2n【译】求所有函数f:z→z,使得对任意整数n有:2f(f(n))=5f(n)-2n

In the sequence 7,76,769,7692,76923,769230,… ,the nth term is given by the first n digits after the decimal point in the expansion of 10/13=0.7692307692⋯.Prove that of the first 60 terms of the sequence, at least 49 have three or more prime factors (repeated prime factors are allowed; for example, 76=2×2×19 has three prime factors).【译】在10/13=0.7692307692⋯的十进制表示中,由小数点后的前n位数构成数列:7,76,769,7692,76923,769230,… ,求证:在该数列的前60项中,至少有49项有三个或以上的素因子(包含重复的素因子,例如76=2×2×19有三个素因子).

设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).