Given a positive integer n, a set S is n-admissible if
①each element of S is an unordered triple of integers in {1,2,⋯,n},
②|S|=n-2,and
③for each 1≤k≤n-2 and each choice of k distinct A1,A2,⋯,Ak∈S,
|A1∪A2∪⋯∪Ak |≥k+2
Is it true that, for all n>3 and for each n-admissible set S, there exist pairwise distinct points P1,P2,⋯,Pn in the plane such that the angles of the triangle Pi Pj Pk are all less than 61° for any triple {i,j,k} in S?
【译】给定正整数n,称集合S是n-可行,如果其满足以下条件:
①S的每个元素都是{1,2,⋯,n}的三元子集;
②|S|=n-2;
③对任意的1≤k≤n-2和任意k个互不相同的A1,A2,⋯,Ak∈S,都有
|A1∪A2∪⋯∪Ak |≥k+2
判断以下命题是否为真:对所有n>3和所有的n-可行集合S,在平面内总存在n个互不相同的点P1,P2,⋯,Pn,使得对集合S中任意元素{i,j,k},三角形Pi Pj Pk的每个内角都小于61°.