关注优题吧,注册平台账号.
一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.
暂无答案
已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.
某工厂今年七月份的产值为100万元,以后每月产值比上月增加20%,问今年七月份到十月份总产值是多少?
求过两直线x+y-7=0和3x-y-1=0的交点且过(1,1)点的直线方程.
证明:(1+tanα)2=(1+sin2α)/cos2α.
已知lg2=0.3010,lg3=0.4771,求lg.
计算:2-1/2+20/√2 + 1/(√2-1).
河南省微积分
设y=ln(x+),求y的导数y'.
已知x+x-1=2cosθ,求证:xn+x-n=2cosnθ.
某电管所为实现农业现代化,加強电力网的建设,沿着一条通往农村的新公路栽电线杆,已知一辆汽车每次从电管所运3根电线杆,相邻两根电线杆的距离为50米,汽车往返的总行程是35.5公里,最后一根电线杆与电管所的距离是2450米.(1)问第一根电线杆与电管所的距离是多少?(2)共栽了多少根电线杆?
叙述并证明勾股定理.
CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).
锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.
魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】
设D是锐角三角形ABC(AB>AC)内部一点,使得∠DAB=∠CAD.线段AC上的点E满足∠ADE=∠BCD,线段AB上的点F满足∠FDA=∠DBC,且直线AC上的点X满足CX=BX.设O1和O2分别为三角形ADC和三角形EXD的外心.证明:直线BC,EF和O1O2共点.
我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1/S2 =___________.
从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)
如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】
若三角形的两边不等,它的对不等边的两角也必不等,并且大角必对大边.
△ABC 之边 AC 之三等分点之中,设近于 A 之点为 D,而 BC 之中点为 E时,则 AE 为 BD 所二等分.
设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .
半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为【 】
圆Γ的圆心为I.凸四边形ABCD满足:线段AB,BC,CD和DA都与Γ相切.设Ω是三角形AIC的外接圆. BA往A方向的延长线交Ω于点X,BC往C方向的延长线交Ω于点Z,AD往D方向的延长线交Ω于点Y,CD往D方向的延长线交Ω于点T.证明:AD+DT+TX+XA=CD+DY+YZ+ZC.
如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.
内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.
两圆相外切 (tangent externally) 于 A,又有一外公切线 (common external tangent) 切两圆于 B 及 C,试证 ∠BAC 为直角(right angle).
已知三角形之三角及其面积,求作其圆.
何谓圆:___________________________.