证明题(1941年中国大学

△ABC 之边 AC 之三等分点之中,设近于 A 之点为 D,而 BC 之中点为 E时,则 AE 为 BD 所二等分.

答案解析

暂无答案

讨论

试证同底之三角形且在同平行线内其面积相等,又证明如何作一三角形令其面积等于已知之四边形.

试言已知三角形之两角及一角之对边,求作其形之方法.

如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】

设 AD 为 ∠ABC 之中线;∠ADB 之平分线交 AB 于E,∠ADC 之平分线交AC 于F,试证 EF// BC.

在锐角三角形ABC中,AB<AC.设Ω为三角形ABC的外接圆.点S是Ω上包含点A的弧BC的中点.过点A作垂直于BC的直线与BS交于点D,与圆Ω交于另一点E,E≠A.过点D且平行于BC 的直线与直线BE交于点L.记ω为三角形BDL的外接圆.设ω与Ω交于另一点P,P≠B.证明:ω在点P处的切线与直线BS的交点在∠BAC的内角平分线上.

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hod:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.Prove that the following three lines meet in a point : the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.设P是凸四边形ABCD内部一点,且满足:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的中垂线,三线共点。 (波兰供题)

一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.

已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).

如图所示,在锐角△ABC中,AB>AC,H是垂心,AM是中线,BE⊥AC于点E,CF⊥AB于F.点D在BC边上,满足∠CAD=∠BAM且∠ADH=∠MAH,证明:EF平分线段AD.

自等边三角形底边上任意一点,引他二边之平行线,所得平行四边形之周围有一定之长.

n 多边形诸角之和=______.

作直线垂直于一已知线,与已知圆相切.

设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)

如图,AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点 . 求证:(1) CD=CM=CN;(2) CD2=AM•BN.

设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .

半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.

如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为【 】