问答题(1933年河北师范大学

试言已知三角形之两角及一角之对边,求作其形之方法.

答案解析

暂无答案

讨论

设由圆外一点作一切线一割线,证明此切线为割线及其圆外线分的比例中率.

设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。

作通过二定点,中心在一定直线上之圆.

任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.

If two circles tangent at C and a common exterior tangent touches the circles in A and B, the angle ACB is a right angle.

直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.

自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.

于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.

设n是一个正整数.日式三角是将1+2+…+n个圆排成正三角形的形状,使得对 i= 1,2,…,n,从上到下的第i行恰有个圆,且其中恰有一个被染为红色.在日式三角内,忍者路径是指一串由n个圆组成的序列,从最上面一行的圆开始,每次从当前圆连接到它下方相邻的两个圆之一,直至到达最下面一行的某个圆为止.下图为一个n=6的日式三角,其中画有一条包含两个红色圆的忍者路径.求最大的整数k(用n表示),使得在每个日式三角中都存在一条忍者路径,它包含至少k个红色圆.

如图,∠ABC=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.已知AD=8,BE=3,则DE=______.