试言已知三角形之两角及一角之对边,求作其形之方法.
设由圆外一点作一切线一割线,证明此切线为割线及其圆外线分的比例中率.
设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。
任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.
直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.
自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.
于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.
如图,∠ABC=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E.已知AD=8,BE=3,则DE=______.