证明题(1932年北京大学

直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.

答案解析

暂无答案

讨论

自等边三角形底边上任意一点,引他二边之平行线,所得平行四边形之周围有一定之长.

CD为直角三角形ABC中斜边AB上的高,已知△ADC,△CBD,△ABC的面积成等比数列,求∠B(用反三角函数表示).

锐角△ABC中,AB>AC,M为其外接圆⊙O的劣弧BC的中点,K为A的对径点,过O作OD∥AM交AB于D,交CA的延长线于E,直线BM交直线CK于P,直线CM交直线BK于Q. 求证:∠OPB+∠OEB=∠OQC+∠ODC.

魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=【 】

我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为S1,小正方形的面积为S2,则S1/S2 =___________.

从山顶D测得地面上同一方向的两点A和B的俯角分别是30°和45°,已知AB=40米,求山高(精确到0.1)

一只船以20海里/小时的速度向正东航行,起初船在A处看见一灯塔B在船的北45°东方向,一小时后船在C处看见这个灯塔在船的北15°东方向,求这时船和灯塔的距离CB.

证明:等腰三角形两腰上的高相等.

为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.

已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).

小陶同学玩如下游戏:取定大于1的常数v;对正整数m,第m轮与第m+1轮间隔为2-m单位时长;其中第m轮是在平面上取一个半径为2-m+1的圆形安全区域(含边界,取圆时间忽略不计);取定后,该圆形安全区域将在整个游戏剩余时间内保持圆心不动,半径以速率v匀速减小,直至半径为零时,去掉该圆形安全区域.若小陶可在第100轮之前(含第100轮)的某轮将圆形安全区域完全取在已有的安全区域内,求[1/(v-1)]的最小值([x]表示不超过x的最大整数).

如图所示,四边形ABCD内接于圆,(AB) ̅=5,(AC) ̅=3√5,(AD) ̅=7,∠BAC=∠CAD,则圆的半径为【 】

在△ABC中,AB=1,AC=3,∠BAC=π/2,半径为r>0的圆与边AB,AC相切,且也内切于△ABC的外接圆,则r的值为__________.

设两弦于圆内相交,其两线分之积,彼此相等,试证明之.

Homologous sides of two similar polygons have the ratio of 5 to 9 , the sum of the areas is 212 sq. ft. Find the area of each figure.

于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.

设n是一个正整数.日式三角是将1+2+…+n个圆排成正三角形的形状,使得对 i= 1,2,…,n,从上到下的第i行恰有个圆,且其中恰有一个被染为红色.在日式三角内,忍者路径是指一串由n个圆组成的序列,从最上面一行的圆开始,每次从当前圆连接到它下方相邻的两个圆之一,直至到达最下面一行的某个圆为止.下图为一个n=6的日式三角,其中画有一条包含两个红色圆的忍者路径.求最大的整数k(用n表示),使得在每个日式三角中都存在一条忍者路径,它包含至少k个红色圆.

如图,△ABC为给定的锐角三角形,其内切圆ω分别与边AB,AC切于点K,L.高AH分别与∠ABC,∠ACB的平分线交于点P,Q.设ω1,ω2分别为△KPB,△LQC的外接圆,AH的中点ω1,ω2外,求证:从AH的中点引向ω1,ω2的切线相等.

Let ABC be an acute-angled triangle with AB > AC. Let P be the intersection of the tangents to the circumcircle of ABC at B and C. The line through the midpoints of line segments PB and PC meets lines AB and AC at X and Y respectively.Prove that the quadrilateral AXPY is cyclic.【译】在锐角三角形ABC中,AB>AC,△ABC的外接圆在点B和点C处的切线交于点P.一条同时过PB和PC中点的直线与AB,AC分别交于点X,Y.求证:A,X,P,Y四点共圆.

Let BC be a fixed segment in the plane, and let A be a variable point in the plane not on the line BC. Distinct points X and Y are chosen on the rays (CA) ⃗ and (BA) ⃗, respectively, such that ∠CBX=∠YCB=∠BAC.Assume that the tangents to the circumcircle of ABC at B and C meet line XY at P and Q, respectively, such that the points X,P,Y, and Q are pairwise distinct and lie on the same side of BC. Let Ω1 be the circle through X and Y centred on BC. Similarly let Ω2 be the circle through Y and Q centred on BC. Prove that Ω1 and Ω2 intersect at two fixed points as A varies.【译】在同一平面内,BC为给定线段,动点A不在直线BC上. X和Y分别为射线(CA) ⃗,射线(BA) ⃗上不重合的两点,满足∠CBX=∠YCB=∠BAC.若三角形ABC外接圆在点B和C处的切线分别交直线XY于点P和点Q,点X,P,Y,Q不重合,且位于直线BC同侧.圆Ω1经过点X,P且圆心在BC上.类地,圆Ω2经过点Y,Q且圆心在BC上.证明:当点A运动时,圆Ω1和圆Ω2始终交于两定点.