证明题(1932年北京大学

内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.

答案解析

暂无答案

讨论

设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。

作通过二定点,中心在一定直线上之圆.

任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.

If two circles tangent at C and a common exterior tangent touches the circles in A and B, the angle ACB is a right angle.

设 △ABC 是一个圆的内接三角形,过 A 作切线交于 BC 的延长线于 D.证明 △ABD,△ACD 的外接圆直径的比等于 AD:CD.

自 △ABC 的顶点 A 至对边作垂线,自垂足 D 作 AB、AC 过之垂线,其垂足为 E、F,证明 B,E,F,C 共圆.

于任意 △ABC 之各边上向外作等边三角形 BCD,CAE 及 ABF,试证此诸等边三角形的外接圆共点.若此点为 P,则 PA+PB + PC =AD =BE =CF.

如图,△ABC为给定的锐角三角形,其内切圆ω分别与边AB,AC切于点K,L.高AH分别与∠ABC,∠ACB的平分线交于点P,Q.设ω1,ω2分别为△KPB,△LQC的外接圆,AH的中点ω1,ω2外,求证:从AH的中点引向ω1,ω2的切线相等.

Let ABC be an acute-angled triangle with AB > AC. Let P be the intersection of the tangents to the circumcircle of ABC at B and C. The line through the midpoints of line segments PB and PC meets lines AB and AC at X and Y respectively.Prove that the quadrilateral AXPY is cyclic.【译】在锐角三角形ABC中,AB>AC,△ABC的外接圆在点B和点C处的切线交于点P.一条同时过PB和PC中点的直线与AB,AC分别交于点X,Y.求证:A,X,P,Y四点共圆.

Let BC be a fixed segment in the plane, and let A be a variable point in the plane not on the line BC. Distinct points X and Y are chosen on the rays (CA) ⃗ and (BA) ⃗, respectively, such that ∠CBX=∠YCB=∠BAC.Assume that the tangents to the circumcircle of ABC at B and C meet line XY at P and Q, respectively, such that the points X,P,Y, and Q are pairwise distinct and lie on the same side of BC. Let Ω1 be the circle through X and Y centred on BC. Similarly let Ω2 be the circle through Y and Q centred on BC. Prove that Ω1 and Ω2 intersect at two fixed points as A varies.【译】在同一平面内,BC为给定线段,动点A不在直线BC上. X和Y分别为射线(CA) ⃗,射线(BA) ⃗上不重合的两点,满足∠CBX=∠YCB=∠BAC.若三角形ABC外接圆在点B和C处的切线分别交直线XY于点P和点Q,点X,P,Y,Q不重合,且位于直线BC同侧.圆Ω1经过点X,P且圆心在BC上.类地,圆Ω2经过点Y,Q且圆心在BC上.证明:当点A运动时,圆Ω1和圆Ω2始终交于两定点.

知一边一邻角及其余二边之和,求作三角形。

设一三角形之底边为 600 尺,其二底角一为 30°,一为 120°,试求其他二边及其高为若干尺。

设n是一个正整数.日式三角是将1+2+…+n个圆排成正三角形的形状,使得对 i= 1,2,…,n,从上到下的第i行恰有个圆,且其中恰有一个被染为红色.在日式三角内,忍者路径是指一串由n个圆组成的序列,从最上面一行的圆开始,每次从当前圆连接到它下方相邻的两个圆之一,直至到达最下面一行的某个圆为止.下图为一个n=6的日式三角,其中画有一条包含两个红色圆的忍者路径.求最大的整数k(用n表示),使得在每个日式三角中都存在一条忍者路径,它包含至少k个红色圆.

给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)

There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)

半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.

如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为【 】

圆Γ的圆心为I.凸四边形ABCD满足:线段AB,BC,CD和DA都与Γ相切.设Ω是三角形AIC的外接圆. BA往A方向的延长线交Ω于点X,BC往C方向的延长线交Ω于点Z,AD往D方向的延长线交Ω于点Y,CD往D方向的延长线交Ω于点T.证明:AD+DT+TX+XA=CD+DY+YZ+ZC.

如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.