证明题(1977年河南省

如图,已知正方形ABCD的边CD上任意一点E.延长BC到F,使CF=CD.设BE与DF相交于G,求证:BG⊥DF.

答案解析

暂无答案

讨论

证明 △ABC 中过 B,C 二顶点之二中线等长,则 △ABC 为等腰,并证明其逆定理.

With BC, one leg of △ABC, as diameter, a circle is described intersecting the hypotenuse AC at P. From P draw a tangent intersecting AB at D. Showt hat AD = BD.

The sides of a triangle are 149,163 and 222. To find(1) The area of the triangle.(2) The radius of the inscribed circle.(3) The angles of the triangle.

在△ABC的边AB,AC上各取D,E点,使AD=1/3 AB,AE=1/3 AC,连结BE,CD相交于F点.求证:S△FBC=1/2 S△ABC.

设 △ABC 的重心为 G,BC、CA 的中点为 E、F,设 △ABC 的面积为 K,求△GEF 的面积.

在锐角三角形ABC中,AB<AC.设Ω为三角形ABC的外接圆.点S是Ω上包含点A的弧BC的中点.过点A作垂直于BC的直线与BS交于点D,与圆Ω交于另一点E,E≠A.过点D且平行于BC 的直线与直线BE交于点L.记ω为三角形BDL的外接圆.设ω与Ω交于另一点P,P≠B.证明:ω在点P处的切线与直线BS的交点在∠BAC的内角平分线上.

Consider the convex quadrilateral ABCD. The point P is in the interior of ABCD. The following ratio equalities hod:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.Prove that the following three lines meet in a point : the internal bisectors of angles ∠ADP and ∠PCB and the perpendicular bisector of segment AB.设P是凸四边形ABCD内部一点,且满足:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的中垂线,三线共点。 (波兰供题)

已知△ABC三内角的大小成等差数列,tanAtanC=2+,求角A,B,C的大小;又知顶点C的对边c上的高等于4,求三角形各边a,b,c的长.(提示:必要时可验证(1+)2=4+2)

直角三角形之斜边上所画之正三角形之面积,等于其余两边上所画之正三角形之面积之和.

试言已知三角形之两角及一角之对边,求作其形之方法.