关注优题吧,注册平台账号.
于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.
暂无答案
若整数m=paqbrc,其p,q,r为质数(primes), 试求m所有约数之个数.
若ω为1之两立方虚根之一,试示=3
求解方程式a³(b-c)(x -b)(x-c)+b³(c-a)(x-c)(x-a) +c³(a-b)(x-a)(x-b) =0且求其有等根之条件.
试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.
求过直线 2x -y+4 =0 与圆 x² +y² + 2x -4y +1 = 0之二交点并点(1,1)之圆之方程式.
有一元票,二元票,十元票各三张,问可付出若干种不同款额?
北京大学解方程
北京大学行列式
两圆外切,其半径各为R和r,设两圆之外公切线之交角为θ,试证 sinθ=.
解下列联立三角方程式
任意之外切四边形,相对两边之和等于其他相对两边之和,试证明之.
If two circles tangent at C and a common exterior tangent touches the circles in A and B, the angle ACB is a right angle.
内接于圆之平行四边形为矩形,其对角线通过圆心,试证明之.
求内接于圆之 正六角形与外切正三角形之面积之比.
两圆相外切 (tangent externally) 于 A,又有一外公切线 (common external tangent) 切两圆于 B 及 C,试证 ∠BAC 为直角(right angle).
已知三角形之三角及其面积,求作其圆.
试证圆内之等弦距圆心均等.又证圆内之两等弦相交割其所割相当之部分各相等.
如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.
有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD·AE=AC·AB.
Let n be a positive integer. A“Northern European Square Matrix (NESM) is an n×n square containing all the integers from 1 to n²,so that there is exactly one number in each grid.The two different grids are neighbours if they share a common edge.A grid is called a "valley”if the integer in it in smaller than the integers in all the neighbours of the grid. An "uphill path”is a sequence containing one or more grids satisfying:(i)the frist grid of the sequence is a valley,(ii) each subsequent grid in the sequence is the neighbour of its previous grid,(iii) the integers in the girds of the sequence is incremented.Figure out the minimum possible value of the number of uphill paths in a NESM which should be represented by a function of n.译文:令n为一个正整数,一个“北欧方阵”是一个包含1至n²所有整数的n×n的方格表,使得每个方格中恰有一个数字。两个相异方格如果有公共边,称它们是相邻的。如果一个方格内的数字比所有相邻方格内的数字都小,称其为“山谷”。一条“上坡路径”是一个包含一或多个方格的序列,满足:(1)序列的第一个方格是山谷;(2)序列中随后的每个方格都和前一个方格相邻;(3)序列中方格所写的数字递增。试求一个北欧方阵中山坡路径的最小可能值,以n的函数表示之。
给定整数n > 1 .在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司 A 和B,各运营 k 辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站) . A 公司的 k 辆缆车的k个起点互不相同, k 个终点也互不相同,并且起点较高的缆车,它的终点也较高. B 公司的缆车也满足相同的条件.我们称两个车站被某家公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数 k ,使得一定有两个车站被两家公司同时连接.(印度供题)
There are 4n pebbles of weights 1,2,3,…,4n. Each pebble is coloured in one of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles into two piles so that the following two conditions are both satisfied:● The total weights of both piles are the same.● Each pile contains two pebbles of each colour.有 4n 枚石子,重量分别为 1 , 2 , 3 , … , 4n .每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:可以把这些小石子分成两堆,且满足以下两个条件:● 两堆小石子的总重量相同;● 每堆中每种颜色的小石子各有两枚.(匈牙利供题)
如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为【 】
如图所示,O是△ABC的内心,∠BOC=100°,则∠BAC=______度.
已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).
沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】
过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为____________.
如图,AD=BC=6,AB=20,∠ABC=∠DAB=120°,O为AB中点,曲线CMD上所有的点到O的距离相等,MO⊥AB,P为曲线CM上的一动点,点Q与点P关于OM对称.(1)若P在点C的位置,求∠POB的大小; (2)求五边形MQABP面积的最大值.
Suppose a convex pentagon ABCDE such that BC=DE.If there exists a point T inside ABCDE suchthat TB=TD TC=TE and ∠ABT=∠TEA. AB meet CD and CT at point P and Q respectively, withP,B,A,Q in this order on the same line. AE meet CD and DT at point R and S respectively, with R,E,A,S in this order on the same line.Prove that P,S,Q,R are on the same circle.译文:设凸五边形ABCDE满足BC=DE.若在ABCDE内存在一点T使得TB=TD,TC=TE且∠ABT= ∠TEA.直线AB分别与直线CD和CT交于点P和Q,且P,B,A,Q在同一直线上按此顺序排列;直线AE分别与直线CD和DT交于点R和S,且R,E,A,S在同一直线上按此顺序排列.证明:P,S,Q,R 四点共圆.