沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】
A、 (11-3√3)/2
B、(11-4√3)/2
C、(9-3√3)/2
D、(9-4√3)/2
沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,(AB) ̂是以O为圆心,OA为半径的圆弧,C是AB的中点,D在(AB) ̂上,CD⊥AB.“会圆术”给出(AB) ̂的弧长的近似值s的计算公式:s=AB+CD2/OA.当OA=2,∠AOB=60°时,s=【 】
A、 (11-3√3)/2
B、(11-4√3)/2
C、(9-3√3)/2
D、(9-4√3)/2
B连接OC,∵C是AB的中点,∴OC⊥AB,又CD⊥AB,∴O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,∴AB=OA=OB=2,∴OC=√3,CD=2-√3,∴s=AB+(CD^2...
查看完整答案在长方体ABCD-A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30°,则【 】
当x=1时,函数f(x)=a lnx+b/x取得最大值-2,则f'(2)=【 】
函数y=(3x-3-x) cosx在区间[-π/2,π/2]的图像大致为【 】
如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为【 】
设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x∣x2-4x+3=0},则∁U(A∪B)=【 】
从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为【 】
已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N^*,证明:1/+1/+⋯+1/>ln( n+1).
于圆内接四边形内,若两对角线成垂直,求证对角线交点与一边中点之距离等于自圆心至对边之距离.
证明:对于一组共轴圆 (co-axial circles) 一定点之诸极线 (polars) 必通过一定点,且一定直线之诸极 (poles) 必在一直线上.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
AO 为圆之半径,过垂直于此之直径上一点 B,引任意弦 BP,从此弦之一端P 引切线 PC 与OB 之延线会于 C,证 CB =CP.
设二圆之连心线交一圆于 A,B 两点,交第二圆于 D,C 二点,又交二圆之一外公切线于 P 点,设在连心线上,点 A 距 P 最近,点 D 距 P 最远,试证:PA· PD = PB·PC.
圆内接四边形 ABCD 内,∠A = 90°,AB = a,BC = b,其面积为 c²,求CD,DA 及圆半径之长.
为了测湖岸边A、B两点的距离,选择一点C,测得CA=50米,CB=30米,∠ACB=120°,求AB.
已知D为△ABC内的一点,AB=AC=1,∠BAC=63°,∠BAD=33°,∠ABD=27°,求DC(精确到小数点后两位,sin27°=0.4540).
如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】
若三角形的两边不等,它的对不等边的两角也必不等,并且大角必对大边.
△ABC 之边 AC 之三等分点之中,设近于 A 之点为 D,而 BC 之中点为 E时,则 AE 为 BD 所二等分.
证明 △ABC 中过 B,C 二顶点之二中线等长,则 △ABC 为等腰,并证明其逆定理.
三角形内任意一点至三顶点 A,B,C 的延长线交对边于 P,Q,R,则BP/CP×CQ/AQ×AR/BR=1.
设 D 为 △ABC 之底边 BC 之中点,若顶角 A 为角直角或锐角,则底边BC 分别大于,等于或小于中线 AD 之二倍.试证之.