三角形内任意一点至三顶点 A,B,C 的延长线交对边于 P,Q,R,则BP/CP×CQ/AQ×AR/BR=1.
有 0,1,2,3,4,5,6,7 八个数字,可组成小于 10000 之数字有几?
解方程式x5-5x4-5x3+25x2+4x-20=0,已知各根为a,-a,b,-b,c等形式.
P -ABC 为一正三角锥,其底面三角形 ABC 正三角形之每边为 10 尺,而APB、BPC、CPA 三个面角均为 30°,求此三角锥之高.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
讨论方程式y=(x²+2x+3)/(2x²+3x+4)并绘其轨迹.
用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.
已知方程式2x³+x²+3x+5=0之根为a,b,c,试用变换方程式法求以a(1/b+1/c),b(1/c+1/a),c(1/a+1/b)为根之方程式.
路旁有塔 CD,塔底 D 与路最近处为路上之 A 点.于路上 B 点测得塔顶 C之仰角为 α,又测得 BC 与路成角β .已知 AD =l,求塔高.
设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
已知直线 y = kx + b (k > 0) 与圆 x2 + y2 = 1 和圆 (x − 4)2 + y2 = 1 均相切, 则 k = _______, b = _______.
如图,AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点 . 求证:(1) CD=CM=CN;(2) CD2=AM•BN.
设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .
半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.