设R为三角形之外接圆半径,试证 acosA+bcosB+ccosC = 4RsinAsinBsinC.
函数y=sin(π/3 - 2x)+cos2x的最小正周期是【 】
已知点P(sinα-cosα,tanα)在第一象限,则在[0,2π]内α的取值范围是【 】
函数f(x)=M sin(ωx+φ) (ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=M cos(ωx+φ)在[a,b]上【 】
若f(x)sinx是周期为π的奇函数,则f(x)可以是【 】
若sinα>tanα>cotα(-π/2<a<π/2),则α∈【 】
函数f(x)=sin x/3+cos x/3的最小正周期和最大值分别是【 】
已知f(x)=3sinx+2,对任意的x1∈[0,π/2],都存在x2∈[0,π/2],使得f(x1)=2f(x2+θ)+2成立,则下列选中θ可能的值是【 】
试证同底之三角形且在同平行线内其面积相等,又证明如何作一三角形令其面积等于已知之四边形.
如图,在三角形ABC中∠BAC=60°,BD平分∠ABC,交AC于D,CE平分∠ACB交AB于E,BD和CE交于F,则∠EFB=【 】
设 AD 为 ∠ABC 之中线;∠ADB 之平分线交 AB 于E,∠ADC 之平分线交AC 于F,试证 EF// BC.
已知△ABC三内角的大小成等差数列,tanAtanC=2+,求角A,B,C的大小;又知顶点C的对边c上的高等于4,求三角形各边a,b,c的长.(提示:必要时可验证(1+)2=4+2)
如图,AB是半圆的直径,C是半圆上一点,直线MN切半圆于C点,AM⊥MN于M点,BN⊥MN于N点,CD⊥AB于D点 . 求证:(1) CD=CM=CN;(2) CD2=AM•BN.
设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .
半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
已知:如图,MN为圆的直径,P、C为圆上两点,连PM、PN,过C作MN的垂线与MN、MP和NP的延长线依次相交于A、B、D,求证:AC2=AB·AD.
有一个圆内接三角形ABC,∠A的平分线交BC于D,交外接圆于E,求证:AD·AE=AC·AB.