函数f(x)=sin x/3+cos x/3的最小正周期和最大值分别是【 】
A、3π和
B、3π和2
C、6π和
D、6π和2
已知全集U={1,2,3,4,5},集合 M ={1,2},N={3,4},则Cu(M∪N)=【 】
已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>-a,求a的取值范围.
已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=(x+f(x))/(xf(x)).证明:g(x)<1.
记Sn为数列{an}的前n项和,bn为数列{Sn}的前n项积,已知2/Sn +1/bn =2.(1)证明:数列{bn}是等差数列;(2)求{an}的通项公式.
如图,四棱锥P-ABCD 的底面是矩形,PD⊥底面ABCD,PD = DC = 1,M 为 BC 的中点,且 PB⊥AM.(1) 求 BC;(2) 求二面角A-PM-B的正弦值.
已知函数f(x)=sin(ωx+φ),如图A,B是直线y=1/2与曲线y=f(x)的两个交点,若|AB|=π/6,则f(π)=________.
已知命题p:若α,β为第一象限角,且α>β,则tanα>tanβ.能说明p为假命题的一组α,β的值为α=______,β=______.
已知函数f(x)=sinωx+sin2x,其中ω∈N+,ω≤2023.若f(x)<2恒成立,则满足题设的常数ω的个数为________.
已知 α ∈ (0, π), 且 3cos2α − 8cosα = 5, 则 sinα =【 】
已知sinθ-cosθ=1/2,求sin3θ - cos3θ的值.
如图,在平面直角坐标系中,在y轴的正半轴(坐标原点除外)上给定两点A,B.试在x轴的正半轴(坐标原点除外)上求点C,使∠ACB取得最大值.