已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.
(1)求p;
(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.
(1)求p;
(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
(1) 抛物线C的焦点为F(0,p/2),|FM|=p/2+4,F与圆M:x2+(y+4)2=1上点的距离最小值为p/2+4-1=4,解得p=2.(2)由(1)知,抛物线C的方程为x2=4y,即y=x2/4,对该函数求导得y'=x/2.设A(x1,y1 ),B(x2,y2 ),P(x0,y0),则直线PA的方程为y-y1=x1/2(x-x1),整理得x1 x-2y1-2y=0,同理可知,直线PB的方程为x2 x-2y2-2y=0,由于点P为PA,P...
查看完整答案从点(-8,8)引 2xy +y² =8 的两条切线,求它们的夹角.
若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.
设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.
在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.
设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则【 】
已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】
斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.
曲线y=(2x-1)/(x+2)在点(-1,-3)处的切线方程为__________.
在△ABC中,已知B=120°,AC=,AB=2,则BC=【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin(2A-B)的值.
于正东正南甲乙二地,测得某山之仰角为 45°及 30°,今甲乙两地之距离为2400 尺,求山高.
求椭圆x²+5y²=5及圆(x+2)²+y²=5之实公切线之方程式.
某人在高处望见正东海面上一船首,其俯角为 30°,当船向正南行 a 里后,求得船首俯角为 15°,问此人之视点高出海面若干?
求圆锥曲线 x² +y² = 49 及 x² +y² - 20y +90 =0之公切线的长.
一动圆与 (x - 2)² +y² =1及 Y 轴皆相切,求动圆圆心之轨迹方程.
求自原点至圆x²+y²-14x+2y+25=0所作的二切线的交角.
已知半径为 1 的圆经过点 (3, 4), 则其圆心到原点的距离的最小值为【 】
已知直线 x − y + 8 = 0 和圆 x2 + y2 = r2 (r > 0) 相交于 A, B 两点. 若 |AB| = 6, 则 r 的值为______.
在平面直角坐标系 xOy 中, 已知 P(/2,0), A、 B 是圆 C : x2+(y-1/2)2=36上的两个动点, 满足 P A = P B, 则 △P AB 面积的最大值是______.
如果圆x2+y2+Gx+Ey+F=0与x轴相切于原点,那么【 】。
在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,且c=10, cosA/cosB=b/a=4/3, P为△ABC的内切圆上的动点.求点P到顶点A,B,C的距离的平方和的最大值与最小值.