问答题(2021年全国乙·理

已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.

(1)求p;

(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.

答案解析

(1) 抛物线C的焦点为F(0,p/2),|FM|=p/2+4,F与圆M:x2+(y+4)2=1上点的距离最小值为p/2+4-1=4,解得p=2.(2)由(1)知,抛物线C的方程为x2=4y,即y=x2/4,对该函数求导得y'=x/2.设A(x1,y1 ),B(x2,y2 ),P(x0,y0),则直线PA的方程为y-y1=x1/2(x-x1),整理得x1 x-2y1-2y=0,同理可知,直线PB的方程为x2 x-2y2-2y=0,由于点P为PA,P...

查看完整答案

讨论

从点(-8,8)引 2xy +y² =8 的两条切线,求它们的夹角.

若相相之二抛物线具有相同之顶点,且其主轴互相垂直,试证其公切线必与二抛物线各切于其通径之一端.

设 F 是抛物线的焦点,在抛物线上任取一点 P 与焦点连接,由 P 作 PQ平于主轴,试证 P 点的法线平分 ∠FPQ.

在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,1/2)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3√3.

设O为坐标原点,直线y=-√3(x-1)过抛物线C:y²=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则【 】

已知抛物线C:y²=8x的焦点为F,点M在C上.若M到直线x=-3距离为5,则|MF|=【 】

在平面直角坐标系xOy中,抛物线Γ:x²=2px(p>0)的焦点为F,过Γ上一点P(异于O)作Γ的切线,与y轴交于点Q.若|FP|=2,|FQ|=1,则向量OP→与OQ→的数量积为__________.

斜率为 的直线过抛物线 C : y2 = 4x 的焦点, 且与 C 交于 A, B 两点, 则 |AB| =______.

若动点P到F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹方程为___________.

过点M(-1,0)的直线l1与抛物线y2=4x交于P1,P2两点.记:线段P1P2的中点这P;过点P和这个抛物线的焦点F的直线为l2;l1的斜率为k.试把直线l2的斜率与直线l1的斜率之比表示为k的函数,并指出这个函数的定义域、单调区间,同时说明在每一单调区间上它是增函数还是减函数.

曲线y=(2x-1)/(x+2)在点(-1,-3)处的切线方程为__________.

在△ABC中,已知B=120°,AC=,AB=2,则BC=【 】

已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】

已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD,DA和AB上的点P2,P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,则tanθ的取值范围是【 】

在∆ABC中,a=√6,b=2c,cosC=-1/4.(1)求∠C的大小;(2)求sinB的值;(3)求sin⁡(2A-B)的值.

于正东正南甲乙二地,测得某山之仰角为 45°及 30°,今甲乙两地之距离为2400 尺,求山高.

求椭圆x²+5y²=5及圆(x+2)²+y²=5之实公切线之方程式.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.

Two towers, A and B, on the shore of a lake can be observed from only one point C on the opposite shore. The lines joining the bases of two towers subtend anangle of 63°42' at C. The heights of the towers are 132 feet and 89 feet, and the angle of elevation of the tops as seen from C are 8°13' and 7°21' respectively.Find the distance AB.

某人在高处望见正东海面上一船首,其俯角为 30°,当船向正南行 a 里后,求得船首俯角为 15°,问此人之视点高出海面若干?