在平面直角坐标系xOy中,抛物线Γ:x²=2px(p>0)的焦点为F,过Γ上一点P(异于O)作Γ的切线,与y轴交于点Q.若|FP|=2,|FQ|=1,则向量OP→与OQ→的数量积为__________.
在平面直角坐标系xOy中,抛物线Γ:x²=2px(p>0)的焦点为F,过Γ上一点P(异于O)作Γ的切线,与y轴交于点Q.若|FP|=2,|FQ|=1,则向量OP→与OQ→的数量积为__________.
3/2
【解析】
解答过程见word版
设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则(PA1)2+(PA2)2+⋯+(PA8)2的取值范围是_______.
已知λ>0,向量|a|=|b|=|c|=λ,且a∙b=0,c∙b=1,c∙a=2,则λ=________.
在∆ABC中,(CA)→=a,(CB)→=b,D是AC的中点,(CB)→=2(BE)→,试用a,b表示(DE)→=________;若(AB)→⊥DE→,求∠C的最大值为______.
如图已知点A(-12),B(3,4)若点P(m,0)使得 |PB|- |PA| 最大,则m的值为【 】
已知向量a ̅=(1,1),b ̅=(1,-1).若(a ̅+λb ̅)⊥(a ̅+μb ̅),则【 】
已知向量a→,b→满足|a→-b→ |=√3,|a→+b→ |=|2a→-b→|,则|b→ |=________.
已知向量a→,b→满足a→+b→=(2,3),a→-b→=(-2,1),则|a→ |²-|b→ |²=【 】
已知向量|a➝ |=1,|b➝ |=2,且a➝,b➝的夹角为120°.若a➝+tb➝与ta➝+b➝的夹角为锐角,则t的取值范围是__________.
设向量 a = (1, −1), b = (m + 1, 2m − 4), 若 a ⊥ b, 则 m =______ .
抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.
如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.
已知圆x2 + y2 - 6x - 7 = 0与抛物线y2 = 2px(p>0)的准线相切,则p=________.
过抛物线y=ax2 (a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则1/p+1/q等于【 】
设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线与A,B两点,点C在抛物线的准线上,且BC//x轴.证明AC经过原点O.
抛物线x2 - 4y - 3=0的焦点坐标为________.
对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】
已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直, Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为__________.
设F1和F2为双曲线x2/4 - y2 = 1的两个焦点,点P在双曲线上且满足∠F1PF2 = 90°,则△F1PF2的面积是【 】
设双曲线x2/a2 - y2/b2 =1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线l的距离为/4 c,则双曲线的离心率为【 】
椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】
椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】
设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.
如图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.
椭圆x2/9+y2/4=1的焦点为F1,F2,点P为其上的动点.当∠F1PF2为钝角时,点P横坐标的取值范围是____________.
如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段AC 所成的比为λ,双曲线过C,D,E三点,且以A,B为焦点.当2/3≤λ≤3/4 时,求双曲线离心率e的取值范围.