问答题(1994年全国统考

如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.

答案解析

设点A,B关于l的对称点分别为A'(x1,y1 ),B'(x2,y2),则|OA' |=|OA|=1,|OB' |=|OB|=8.设由x轴正向到OB'的旋转角为α,则x2=8cosα,y2=8sinα.①因为A',B'为A,B关于直线l的对称点,而∠BOA为直角,故∠B' OA'为直角,因此x1=cos⁡(α-π/2)=sinα,y1=sin⁡(α-π/2)=-cosα,②由题意知x1>0,x2>0,故α为第一象限角.因为A',B'都在抛物线y2=2px上,将①,②代入得cos2 α=...

查看完整答案

讨论

已知方程 kx2+y2=4 ,其中k为实数。对于不同范围的k值,分别指出方程所代表图形的类型 ,并画出显示其数量特征的草图.

如图,已知椭圆长轴|A1A2 |=6,焦距|F1F2 |=4,过椭圆焦点F1作一直线,交椭圆于两点M,N,设∠F2F1M=α(0≤α<π),当α取什么值时,|MN|等于椭圆短轴的长?

求经过定点M(1,2),以y轴为准线,离心率为1/2的椭圆的左顶点的轨迹方程.

已知椭圆Γ的方程x2/a2 +y2/b2 =1(a>b>0),点P的坐标为 (-a,b).(1) 若直角坐标平面上的点 M,A(0,-b),B(a,0)满足=1/2(+),求点M的坐标;(2) 设直线l1:y=k1 x+p交椭圆Γ于C,D两点,交直线l2:y=k2 x 交于点E,若k1•k2=-b2/a2 ,证明:E为CD的中点;(3) 对于椭圆Γ上的点Q(acos⁡θ,bsin θ)(0<θ<π),如果椭圆Γ上存在不同的两点P1, P2,使得+=,写出求作点P1,P2的步骤,并求出使P1, P2存在的θ的取值范围.

设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】

如图,直线l的方程是x=-p/2,其中p>0;椭圆的中心为D(2+p/2,0),焦点在x轴上,长半轴长为2,短半轴长为1,它的一个顶点这A(p/2,0).问:p在哪个范围取值时,椭圆上有四个不同的点,它们中每一个点到点A的距离等于该点到直线l的距离?

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=/2,已知点P(0,3/2)到这个椭圆上的点的最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.

已知点P在直线x=2上移动,直线l通过原点且与OP垂直,通过点A(1,0)及点P的直线m和直线l交于点Q.求点Q的轨迹方程,并指出该迹的名称和它的焦点坐标.

椭圆9x2 + 16y2 = 144的离心率为______.

已知椭圆x2/a2 +y2/b2 =1(a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0).证明:-(a2 - b2)/a < x0 < (a2 - b2)/a.