i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.
ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.
ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
暂无答案
试讨论方程y=x(x²-1)之图形:i) 对于原点、x轴、y轴对称否.ii) 与x轴之交点如何? 并作图.
试从x=by+cz,y=cz+ax,z=ax+by,消去x,y,z.求a,b,c间的关系式.
方程12x³-28x²+17x-3=0之根为a,b,c,已知b=a+1,求a,b,c.
证明: cos(α+β-γ)+cos(α-β+γ)-cos(β+γ-α)-cos(α+β+γ)=4cosα∙sinβ∙sinγ.
设人眼在墙顶上观察一塔,测得塔之全长所夹之角为θ,设墙高为h尺,墙与塔之距离为d尺.试证:(h²+d²)sinθ/(hsinθ+dcosθ)尺为塔这高.
试判别方程x²+2xy-8y²+2x+14y-3=0之图形的性质.
一圆经过两点(2,-3),(-4,-1),而其中心在直线3y+x-18=0上,求圆的方程.
已知向量a=(2,1),b=(-2,4),则|a-b|=【 】
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
在△ABC中,AC=3,BC=4,∠C=90°.P为△ABC所在平面内的动点,且PC=1,则(PA)⋅(PB)的取值范围是【 】
已知双曲线y2+x2/m=1的渐近线方程为y=±√3/3 x,则m=__________.
已知平面直角坐标系中的点集Q={(x,y)|(x-k)2+(y-k2)2=4|k,k∈z}.①存在直线l与Q没有公共点,且Q中存在两点在l的两侧;②存在直线l经过Q中的无数个点则【 】
已知圆C:(x-a)2+(y-2)2=4(a>0)及直线l:x-y+3=0.当直线l被C截得的弦长为2√3时,a=【 】
直线x-y+m=0(m>0)与圆(x-1)2+(y-1)2=3相交所得的弦长为m,则m=______.
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
求椭圆x²+5y²=5及圆(x+2)²+y²=5之实公切线之方程式.
A,B,C 为共线之三定点,动点 P 至A,B与 B,C 所张之角恒相等,试求 P 点之轨迹.
已知一圆及一直线,求作该圆之切线,使其自切点至该直线间之线段,等于已知长.
设有一三角形ABC:假定A及B两顶为固定不移,其他一C在AC²+BC²=2/5 AB²之条件下运动,则其轨迹为何如?
求已知圆 x²+y² - 6x +4y = 12 之两切方程式,与一已知线 4x + 3y +5=0平行.
若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.