若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
A、1/2
B、-1/2
C、1
D、-1
若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】
A、1/2
B、-1/2
C、1
D、-1
A
【解析】
由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a+0-1=0,解得a=1/2.
已知全集U={ x|-3<x<3},集合A={ x|-2<x≤1},则∁UA=【 】
已知函数f(x)=ax-1/x-(a+1)lnx.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.
记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinC sin(A-B)=sinBsin(C-A).(1)若A=2B,求C;(2)证明:2a2=b2+c2.
若f(x)=ln|a+1/(1-x)|+b是奇函数,则a=_____,b=______.
记Sn为等差数列{an}的前n项和.若2S3=3S2+6,则公差d=__________.
函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为【 】
设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】
设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】
已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.
设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】
已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足=9,求直线OQ斜率的最大值.
已知圆C:x2+y2=4,直线L:y=kx+m,则当k的值发生变化时,直线被圆C所截的弦长的最小值为1,则m的取值为【 】
已知抛物线C:y2=4x,焦点为F,点M在C上,且|FM|=6,则M的横坐标是______;作MN⊥x轴于N,则S△FMN=______.
已知圆x2+y2-2x-4y=0,则该圆的圆心坐标为__________.
已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.
若斜率为√3的直线与y轴交于点A,与圆x2+(y-1)2=1相切与点B,则|AB|=_______.
写出与圆x2+y2=1和(x-3)2+(y-4)2=16都相切的一条直线的方程________________.
设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为______________.
设二斜交轴 x 与y 交角为 θ,作一圆使通过 x 轴上之二定点 (a²,0),(b²,0)且与 y 轴相切,求此圆之方程式.
过点(0,-2)与圆x²+y²-4x-1=0相切的两条直线的夹角为α,则sinα=【 】
已知直线l:x-my+1=0与⨀C:(x-1)²+y²=4交于A,B两点,写出满足“△ABC的面积为8/5”的m的一个值______.