单项选择(2022年北京市

若直线2x+y-1=0是圆(x-a)2+y2=1的一条对称轴,则a=【 】

A、1/2

B、-1/2

C、1

D、-1

答案解析

A

【解析】

由题可知圆心为(a,0),因为直线是圆的对称轴,所以圆心在直线上,即2a+0-1=0,解得a=1/2.

讨论

抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:x=1交C于P,Q两点,且OP⊥OQ.已知点M(2,0),且⨀M与l相切.(1) 求C,⨀M的方程;(2) 设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与⨀M相切.判断直线A2A3与⨀M的位置关系,并说明理由.

设B是椭圆C:x2/a2 +y2/b2 =1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率取值范围是【 】

已知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+4)2=1上点的距离最小值为4.(1)求p;(2)若P在M上,PA,PB是C的两切线,A,B是切点,求△PAB面积的最大值.

设B是椭圆C:x2/5+y2=1的上顶点,点P在C上,则|PB|的最大值为【 】

已知抛物线C:y2=2px(p>0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足=9,求直线OQ斜率的最大值.

已知圆C:x2+y2=4,直线L:y=kx+m,则当k的值发生变化时,直线被圆C所截的弦长的最小值为1,则m的取值为【 】

已知抛物线C:y2=4x,焦点为F,点M在C上,且|FM|=6,则M的横坐标是______;作MN⊥x轴于N,则S△FMN=______.

已知椭圆E:x2/a2 +y2/b2 =1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC交y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.

已知圆x2+y2-2x-4y=0,则该圆的圆心坐标为__________.

已知抛物线y2=2px(p>0),若第一象限的点A,B在抛物线上,焦点为F,|AF|=2,|BF|=4,|AB|=3,直线AB的斜率为__________.