已知函数f(x)=ax-1/x-(a+1)lnx.
(1)当a=0时,求f(x)的最大值;
(2)若f(x)恰有一个零点,求a的取值范围.
已知函数f(x)=ax-1/x-(a+1)lnx.
(1)当a=0时,求f(x)的最大值;
(2)若f(x)恰有一个零点,求a的取值范围.
(1)当a=0时,f(x)=-1/x-lnx,x>0,则f' (x)=1/x2 -1/x=(1-x)/x2 ,当x∈(0,1)时,f' (x)>0,f(x)单调递增;当x∈(1,+∞)时,f' (x)<0,f(x)单调递减;所以f(x)max=f(1)=1;(2)f(x)=ax-1/x-(a+1) lnx,x>0,则f' (x)=a+1/x2 -(a+1)/x=(ax-1)(x-1)/x2 ,当a≤0时,ax-1≤0,所以当x∈(0,1)时,f' (x)>0,f(x)单调递增;当x∈(1,+∞)时,f' (x)<0,f(x)单调递减;所以f(x)(1)max,此时函数无零点,不合题意;当0<a<1时,1/a>1,在(0,1),(1/a,+∞)上,f' (x)>0,f(x)单调递增;在(1,1/a)上...
查看完整答案已知曲线y=x3-6x2+11x-6. 在它对应于x∈[0,2]的弧段上求一点P,使得曲线在该点的切线在y轴上的截距为最小,并求出这个最小值.
求过点(-1,0)并与曲线y=(x+1)/(x+2)相切的直线方程.
用总长14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高多少时容器的面积容积最大?并求出它的最大容积。
函数f(x)=|2x-1|-2lnx的最小值为__________.
设函数f(x)=a2x2+ax-3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.
设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=(x+f(x))/(xf(x)).证明:g(x)<1.
已知函数f(x)=x3 - x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.
已知函数f(x)=x(1-lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<1/a+1/b<e.
已知函数 和g(x)=ax-lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
已知函数f(x)=ex/x-lnx+x-a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则x1x2<1.
设函数 f(x) = ln|2x + 1| − ln|2x − 1|, 则 f(x)【 】
已知函数 f(x) = x3 − kx + k2.(1) 讨论 f(x) 的单调性;(2) 若 f(x) 有三个零点, 求 k 的取值范围.