问答题(2000年全国新课程

用总长14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高多少时容器的面积容积最大?并求出它的最大容积。

答案解析

设容器底面短边长xm,则另一边长为(x+0.5) m,高为(14.8-4x-4(x+0.5))/4=3.2-2x.由3.2-2x>0和x>0,得0<x<1.6,设容器的容积为ym3,则有y=x(x+0.5)(3.2-2x)(0<x<1.6).整理,得y=-2x3+2.2x3+1.6x,∴y'=-6x2+4.4x+1.6.令y'=0,有-6x2+4.4x+...

查看完整答案

讨论

求(x+2)/(2x²+3x+6)之最大值.

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?

如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流人,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问:当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?

某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?

设α=sin2k⁡(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】

设(a-1)(b-1)>0,a,b,θ皆为实数,求(a+cosθ)(b+cosθ)/(1+cosθ)之极小值.

设a>0,函数f(x)=,给出下列四个结论:①f(x)在区间(a-1,+∞)上单调递减;②当a≥1时,f(x)存在最大值;③设M(x1,f(x1 ))(x1≤a),N(x2,f(x2))(x2>a),则|MN|>1;④设P(x3,f(x3 ))(x3<-a),Q(x4,f(x4))(x4≥-a),若|PQ|存在最小值,则a的取值范围是(0,1/2].其中所有正确结论的序号是____________.

设函数f(x)满足:对任意非零实数x,均有f(x)=f(1)∙x+f(2)/x-1,则f(x)在(0,+∞)上的最小值为__________.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 5x2y2 + y4 = 1 (x, y ∈ R), 则 x2 + y2 的最小值是________.

曲线 y = lnx + x + 1 的一条切线的斜率为 2, 则该切线的方程为 ________________.

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

已知曲线y=x3-6x2+11x-6. 在它对应于x∈[0,2]的弧段上求一点P,使得曲线在该点的切线在y轴上的截距为最小,并求出这个最小值.

求过点(-1,0)并与曲线y=(x+1)/(x+2)相切的直线方程.

证明:当0<x<1时,x-x²<sinx<x.

若曲线y=(x+a)ex有两条过坐标原点的切线,则a的取值范围是______________.

已知函数f(x)=x3-x,g(x)=x2+a,曲线y=f(x)在点(x1,f(x1))处的切线也是曲线y=g(x)的切线.(1)若x1=-1,求a;(2)求a的取值范围.

已知x=x1和x=x2分别是函数f(x)=2ax-e⁡x2(a>0且a≠1)的极小值点和极大值点.若x1<x2,则a的取值范围是____________.

设函数f(x)=e/2x+ln⁡x (x>0).(1)求f(x)的单调区间;(2)已知a,b∈R,曲线y=f(x)上不同的三点(x1,f(x1 )),(x2,f(x2 )),(x_3,f(x_3 ))处的切线都经过点(a,b).证明:(ⅰ)若a>e,则0<b-f(a)<1/2 (a/e-1);(ⅱ)若0<a<e,x1<x2<x_3,则2/e+(e-a)/(6e2 )<1/x1 +1/x_3 <2/a-(e-a)/(6e2 ).(注:e=2.71828⋯是自然对数的底数)

已知函数f(x)=ln⁡x/(2-x)+ax+b(x-1)³.(1)若b=0,且f'(x)≥0,求a的最小值;(2)证明:曲线f(x)为中心对称函数;(3)若f(x)>-2,当且仅当1<x<2,求b的取值范围.