甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.
(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?
甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时.已知汽车每小时的运输成本速度(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.
(Ⅰ)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?
(Ⅰ)依题意知,汽车从甲地匀速行驶到乙地所用时间为s/v,全程运输成本为y=a•s/v+bv2•s/v=s(a/v+bv),故所求函数及其定义域为y=s(a/v+bv),v∈ (0,c].(Ⅱ)依题意知s,a,b,v都为正数,故有s(a/v+bv)≥2s.当且仅有a/v=bv,即v=时上式中等号成立.若≤c,则当v=时,全程运输成本y最小.若>c,则当v∈ (0,c]时,有s(a...
查看完整答案函数f,g:R⟶R定义为f(x)=x²+5/12,g(x)=,区域{(x,y)∈R×R||x|≤3/4,0≤y≤min[f(x),g(x)]}的面积为α,则9α的值为________.
甲,乙两车分别从 A,B 两地同时出发相向而行,1 小时后,甲车到达 C 点,乙车到达 D点则能确定 AB 两地的距离【 】(1)已知 C,D 两地距离(2) 已知甲,乙两车速度比
已知集合A={1,2,3},映射f:A→A,且满足对任意x∈A,有f(f(x))≥x,且这样的f有________个.
设S={z∈C||z|=1}.求所有函数f:S→S,使得f为连续单射,且对任意z1,z2∈S,有f(z1 z2 )=f(z1)f(z2).
函数 f(x) = 1/(x+1)+lnx 的定义域是__________.
若a>0,b>0,则1/a+a/b2 +b的最小值为__________.
某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?
Find the maximum value of (7-x)4 (2+x)6 when x lies between 7 and 2.
设α=sin2k(π/6) ,函数g:[0,1]→R定义为g(x)=2αx+2α(1-x).下列叙述正确的有【 】