问答题(1947年四川大学

设一三角形三边之长为方程式 x³ +px² + qx +r = 0 三根,式中 p,g,r 均为已知数,求此三角形之面积.

答案解析

暂无答案

讨论

函数f(x)=a-√3tan2x在闭区间[-π/6,b]上的最大值为7,最小值为3,则a×b的值为【 】

设A,B,C与a,b,c依次为一三角形之三角与三边,试证a/(b+c)=

英:Show how to describe a triangle having given its angles and its perimeter.汉:己知三角形三角及周长,解此三角形.

A,B,C are the angles of a triangle, prove that tanA+tanB+tanC=tanAtanBtanC.

设自 A 地量得敌人炮台所在地 B 及另一地 C 间之角 ∠ABC 为 70°20',自C 地量得 ∠ACB 为 62°50',且量得 AC 两地之距离为 10.6 公里问 A 地至敌人炮台之距离为若干?(sin62°50'= 0.8897;cos70°20' =0.3365)

两树相距 50 尺,在此树距地 5 尺处观他树之树顶与树根适成 90°之角,又观他树顶之仰角为 60°,求他树之高.

在平地上一点 A,测得某山顶 P 之仰角 (elevation) 为 60°,自 A 点,在平地上,向山麓前进 800 尺至 B 点.自 B 点沿一与平地倾斜 30°之斜坡,再向山顶前进 800 尺,至 C 点,在 C 点测得山顶 P之仰角为 75°.若 A,B,C,P四点在一垂直平面内,求此山之高.

于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.