问答题(2022年新高考Ⅱ

已知函数f(x)=xeax-ex

(1)当a=1时,讨论f(x)的单调性;

(2)当x>0时,f(x)<-1,求a的取值范围;

(3)设n∈N^*,证明:1/+1/+⋯+1/>ln⁡( n+1).

答案解析

(1)当a=1时,f(x)=(x-1) ex,则f' (x)=xex,当x<0时,f' (x)<0,当x>0时,f' (x)>0,故f(x)的减区间为(-∞,0),增区间为(0,+∞).(2)设h(x)=xeax-ex+1,则h(0)=0,又h' (x)=(1+ax) eax-ex,设g(x)=(1+ax) eax-ex,则g' (x)=(2a+a2 x) eax-ex,若a>1/2,则g' (0)=2a-1>0,因为g' (x)为连续不间断函数,故存在x0∈(0,+∞),使得∀x∈(0,x0 ),总有g' (x)>0,故g(x)在(0,x0)为增函数,故g(x)>g(0)=0,故h(x)在(0,x0)为增函数,故h(x)>h(0)=-1,与题设矛盾.若0<a≤1/2,则h' (x)=(1+ax) eax-ex=e^(ax+ln⁡(1+ax) )-ex,下证:对任意x>0,总有ln⁡(1+x)<x成立,证明:设S(x)=ln⁡(1+x)-x,故S' (x)=1/(1+x)-1=(-x)/(1+...

查看完整答案

讨论

已知关于 x 的函数 y = f(x), y = g(x) 与 h(x) = kx + b (k, b ∈ R) 在区间 D 上恒有 f(x) ⩾ h(x) ⩾ g(x).(1) 若 f(x) = x2 + 2x, g(x) = −x2 + 2x, D = (−∞, +∞), 求 h(x) 的表达式;(2) 若 f(x) = x2 − x + 1, g(x) = k ln x, h(x) = kx − k, D = (0, +∞), 求 k 的取值范围;(3) 若 f(x) = x4−2x2, g(x) = 4x2−8, h(x) = 4(t3−t)x−3t4+2t2 (0 < |t| ⩽), D = [m, n] ⊂ [-, ].求证: n − m ⩽.

已知函数f(x)=(3-2x)/(x2+a).(1)若a=0,求y=f(x)在(1,f(1))处的切线方程;(2)若函数f(x)在x=-1处取得极值,求f(x)的单调区间,以及最大值和最小值.

设a,b为实数,且a>1,函数f(x)=ax-bx+e2 (x∈R)(1)求函数f(x)的单调区间;(2)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(3)当a=e时,证明:对任意b>2e4,函数f(x)有两个不同的零点x1,x2,满足:x2>blnb/(2e2 ) x1+e2/b. (注:e=2.71828… 是自然对数的底数)

已知函数f(x)=x3-x+1,则【 】

若曲线y=(x+a)ex有两条过坐标原点的切线,则a的取值范围是______________.

已知函数f(x)=a(ex+a)-x.(1)讨论f(x)的单调性;(2)证明:当a>0时,f(x)>2lna+3/2.

若函数f(x)=alnx+b/x+c/x² (a≠0)既有极大值也有极小值,则【 】

已知曲线y=x3-6x2+11x-6. 在它对应于x∈[0,2]的弧段上求一点P,使得曲线在该点的切线在y轴上的截距为最小,并求出这个最小值.

求过点(-1,0)并与曲线y=(x+1)/(x+2)相切的直线方程.

用总长14.8m的钢条制作一个长方体容器的框架,如果所制作容器的底面的一边比另一边长0.5m,那么高多少时容器的面积容积最大?并求出它的最大容积。