填空题(2000年上海市

根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%.市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%.若GDP与人口均按这样的速度增长,则要使本市年人均GDP达到或超过1999年的2倍,至少需______年.(按:1999年本市常住人口总数约1300万)

答案解析

9

讨论

如图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出. (I)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过r0.问冷轧机至少需要安装多少对轧辊?[一对轧辊减薄率= (输入该对的带钢厚度-从该对输出的带钢厚度) ÷输入该对的带钢厚度](Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600 mm.若第k对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,,在冷轧机输出的带钢上,疵点的间距为Lk.为了便于检修,请计算L1 、L2 、L3并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).

已知数列{cn},其中cn=2n+3n,且数列{cn+1 - pcn}为等比数列,求常数p.

设{cn},{bn}是公比不相等的两个比数列,cn =an+bn.证明数列{cn}不是等比数列.

记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】

设等比数列 {an} 满足 a1 + a2 = 4, a3 − a1 = 8.(1) 求 {an} 的通项公式;(2) 记 Sn 为数列 {log3an} 的前 n 项和. 若 Sm + Sm+1 = Sm+3, 求 m.

已知公比大于 1 的等比数列 {an} 满足 a2 + a4 = 20, a3 = 8.(1) 求 {an} 的通项公式;(2) 记 bm 为 {an} 在区间 (0, m] (m ∈ N∗) 中的项的个数, 求数列 {bm} 的前 100 项和 S100.

已知 {an} 是无穷数列. 给出两个性质:① 对于 {an} 中任意两项 ai, aj (i > j), 在 {an} 中都存在一项 am, 使得 =am;② 对于 {an} 中任意一项 an (n ⩾ 3), 在 {an} 中都存在两项 ak, al (k > l), 使得 an = .(I) 若 an = n (n = 1, 2, …), 判断数列 {an} 是否满足性质 ①, 说明理由;(II) 若 an = 2n−1 (n = 1, 2, · · · ), 判断数列 {an} 是否同时满足性质 ① 和性质 ②, 说明理由;(III) 若 {an} 是递增数列, 且同时满足性质 ① 和性质 ②, 证明: {an} 为等比数列.

已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则(a1+a3+a9)/(a2+a4+a10 )的值是________.

在各项均为正数的等比数列{an}中,若a5a6 = 9,则log3a1 + log3a2 + ... + log3a10 =【 】

以三角形各边为直径作圆,试证任意两边上二圆公切线之长为第三边被内切圆切点所分两部分之比例中项.