计算题(1933年南京大学

log10(+25)-log10⁡x=1

答案解析

暂无答案

讨论

青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(≈1.259)【 】

设a=2ln1.01,b=ln1.02,c=-1,则【 】

(2lg2+lg3)/(2+lg0.36+2/3 lg8)

河北省对数函数

求(lg3+lg2)/(1/4 lg16++1/2 lg0.09)的值.(其中lg表示以10为底的对数)

计算(2log4⁡3+log8⁡3)(log3⁡2+log9⁡2)的值为【 】

求满足方程log2⁡(3x+2)=2+log2(x-2)的x值.

设 alog34 = 2, 则 4−a =【 】

Logistic 模型是常用数学模型之一, 可应用于流行病学领域. 有学者根据公布数据建立了某地区新冠肺炎 累计确诊病例数 I(t) (t 的单位: 天) 的 Logistic 模型: I(t) = , 其中 K 为最大确诊病例数. 当 I(t∗) = 0.95K 时, 标志已初步遏制疫情, 则 t∗ 约为 (ln19 ≈ 3)【 】

基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数. 基本再生数指一个感染者传染的平均人数, 世代间隔指相邻两代间传染所需的平均时间. 在新冠肺炎疫情初始阶段, 可以用指数模型: I(t) = ert 描述累计感染病例数 I(t) 随时间 t (单位: 天) 的变化规律, 指数增长率 r 与 R0, T 近似满足 R0 = 1 + rT. 有学者基于已有数据估计出 R0 = 3.28, T = 6. 据此, 在新冠肺炎疫情初始阶段, 累计感染病例数增加 1 倍需要的时间约为(ln 2 ≈ 0.69)【 】