关注优题吧,注册平台账号.
设a=2ln1.01,b=ln1.02,c=-1,则【 】
A、a<b<c
B、b<c<a
C、b<a<c
D、c<a<b
B
求4x+49y-28之平方根.
求a³/b及b³/a之正等比中项.
Evaluate to four significant figure by logarithm,
全国统考幂函数
设a,b,c都是正数,且3a = 4b = 6c,那么【 】
某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可以繁殖成【 】
根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP(GDP是指国内生产总值)4035亿元,2000年上海市GDP预期增长9%.市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%.若GDP与人口均按这样的速度增长,则要使本市年人均GDP达到或超过1999年的2倍,至少需______年.(按:1999年本市常住人口总数约1300万)
已知a>0且a≠1,函数f(x)=xa/ax (x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.
对于正整数m(m≥2),使得m12的n次方根为整数的正整数n(n>2)的个数记为f(m),则f(m)的值为【 】
设a>0,f(x)=ex/a+a/ex 是R上的偶函数.(Ⅰ)求a的值.(Ⅱ)证明f(x)在(0,+∞)上是增函数.
设 a = 30.7, b =(1/3)-0.8, c =log0.70.8, 则 a, b, c 的大小关系为【 】
设0<x<1,a>0,a≠1,比较|loga(1-x)|与|loga(1+x)|的大小(要写出比较过程).
设0.32,log20.3,20.3,这三个数之间的大小顺序是【 】
全国统考不等关系与不等式
已知1<x<d,令a=(logdx)2,b=logd(x2),c=logd(logdx),则【 】
若a,b是任意实数,且a>b,则【 】
已知a=31/32,b=cos1/4,c=4 sin1/4,则【 】
使log2(-x)<x+1成立的x的取值范围是__________.
若 2x − 2y < 3−x − 3−y, 则【 】
设 a = log32, b = log53, c = 2/3, 则【 】
噪声污染问题越来越受到重视,用声压级来度量声音的强弱, 定义声压级Lp=20×lg(p/p0),其中常数p0 (p0>0)是听觉下限阈值,p是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则【 】
设 alog34 = 2, 则 4−a =【 】
Logistic 模型是常用数学模型之一, 可应用于流行病学领域. 有学者根据公布数据建立了某地区新冠肺炎 累计确诊病例数 I(t) (t 的单位: 天) 的 Logistic 模型: I(t) = , 其中 K 为最大确诊病例数. 当 I(t∗) = 0.95K 时, 标志已初步遏制疫情, 则 t∗ 约为 (ln19 ≈ 3)【 】
基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数. 基本再生数指一个感染者传染的平均人数, 世代间隔指相邻两代间传染所需的平均时间. 在新冠肺炎疫情初始阶段, 可以用指数模型: I(t) = ert 描述累计感染病例数 I(t) 随时间 t (单位: 天) 的变化规律, 指数增长率 r 与 R0, T 近似满足 R0 = 1 + rT. 有学者基于已有数据估计出 R0 = 3.28, T = 6. 据此, 在新冠肺炎疫情初始阶段, 累计感染病例数增加 1 倍需要的时间约为(ln 2 ≈ 0.69)【 】
已知log189=a(a≠2),18b=5,求log3645.
证明对数换底公式:logbN=logaN/logab.(a,b,N都是正数,a≠1,b≠1)
函数y=10lgx中,x的取值范围是__________.
已知a,b为实数,并且e<a<b,其中e是自然对数的底,证明 ab>ba.
若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是【 】
青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(≈1.259)【 】