单项选择(2022年浙江省

已知2a=5,⁡log83=b,则4a-3b=【 】

A、25

B、5

C、25/9

D、5/3

答案解析

C

【解析】

因为2a=5,b=log8⁡3=1/3 log2⁡3,即23b=3,所以4a-3b=4a/43b =(2a)2/(23b)2 =52/32 =25/9.

讨论

噪声污染问题越来越受到重视,用声压级来度量声音的强弱, 定义声压级Lp=20×lg⁡(p/p0),其中常数p0 (p0>0)是听觉下限阈值,p是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则【 】

设 alog34 = 2, 则 4−a =【 】

Logistic 模型是常用数学模型之一, 可应用于流行病学领域. 有学者根据公布数据建立了某地区新冠肺炎 累计确诊病例数 I(t) (t 的单位: 天) 的 Logistic 模型: I(t) = , 其中 K 为最大确诊病例数. 当 I(t∗) = 0.95K 时, 标志已初步遏制疫情, 则 t∗ 约为 (ln19 ≈ 3)【 】

基本再生数 R0 与世代间隔 T 是新冠肺炎的流行病学基本参数. 基本再生数指一个感染者传染的平均人数, 世代间隔指相邻两代间传染所需的平均时间. 在新冠肺炎疫情初始阶段, 可以用指数模型: I(t) = ert 描述累计感染病例数 I(t) 随时间 t (单位: 天) 的变化规律, 指数增长率 r 与 R0, T 近似满足 R0 = 1 + rT. 有学者基于已有数据估计出 R0 = 3.28, T = 6. 据此, 在新冠肺炎疫情初始阶段, 累计感染病例数增加 1 倍需要的时间约为(ln 2 ≈ 0.69)【 】

已知a>0,a≠1,试求使方程loga(x-ak)=(x2-a2)有解的k的取值范围.

已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是【 】

若定义在区间(-1,0)内的函数f(x)=log2a⁡(x+1))满足f(x)>0,则a的取值范围是【 】

若定义在区间(-1,0)内的函数f(x)=log2a⁡(x+1)满足f(x)>0,则a的取值范围是【 】

青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(≈1.259)【 】

设a=2ln1.01,b=ln1.02,c=-1,则【 】