若实数 x, y 满足约束条件 , 则 z = x + 2y 的取值范围是【 】
A、(−∞, 4]
B、[4, +∞)
C、[5, +∞)
D、(−∞, +∞)
若实数 x, y 满足约束条件 , 则 z = x + 2y 的取值范围是【 】
A、(−∞, 4]
B、[4, +∞)
C、[5, +∞)
D、(−∞, +∞)
B
已知 x, y 满足,求 z = y − 2x 的最大值为________.
已知实数x,y满足,则z=x-y的最大值为__________.
现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字 最小值为ξ,则 P(ξ=2)=__________,E(ξ)= _________.
已知a,a∈R,ab>0,函数f(x)=ax2+bx(x∈R).若f(s-t),f(s),f(s+t)成等比数列,则平面上点(s,t)的轨迹是【 】
袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为1/6,一红一黄的概率为1/3,则m-n=_________,E(ξ)=________.
若 x, y 满足约束条件 则 z = x + 7y 的最大值为 __________.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
f(x) =| x − a2 |+ |x − 2a + 1| .(1) 当 a = 2 时, 求不等式 f(x) ⩾ 4 的解集.(2) f(x) ⩾ 4, 求 a 的取值范围.
若 x, y 满足约束条件 , 则 z = x + 2y 的最大值是__________.
若 x, y 满足约束条件, 则 z = 3x + 2y 的最大值是__________.