命题 p : 存在 a≠ 0, 对于任意的 x, 使 f(x + a) < f(x) + f(a); 命题 q1 : f(x) 为单调递减函数且 f(x) > 0恒成立; 命题 q2 : f(x) 为单调递增函数且存在 x0 < 0, 使 f(x0) = 0. 则下列说法正确的是【 】
A、 q1, q2 都是 p 的充分条件
B、只有 q2 是 p 的充分条件
C、只有 q1 是 p 的充分条件
D、q1, q2 都不是 p 的充分条件
命题 p : 存在 a≠ 0, 对于任意的 x, 使 f(x + a) < f(x) + f(a); 命题 q1 : f(x) 为单调递减函数且 f(x) > 0恒成立; 命题 q2 : f(x) 为单调递增函数且存在 x0 < 0, 使 f(x0) = 0. 则下列说法正确的是【 】
A、 q1, q2 都是 p 的充分条件
B、只有 q2 是 p 的充分条件
C、只有 q1 是 p 的充分条件
D、q1, q2 都不是 p 的充分条件
C
设f(x)=x3+log2(x+),对任意实数a,b,a+b≥0是f(a)+f(b)≥0的【 】.
设{an}是公差不为0的无穷等差数列,则“{an}为递增数列”是“存在正整数N0,当n>N0时,an>0”的【 】
有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.
关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.
已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根