某研究所甲、乙、丙、丁、戊5人拟定去我国四大佛教名山,普陀山、九华山、五台山、峨眉山考察。他们每人去了上述两座名山,其每座名山均有其中 2-3 人前往,丙、丁结伴考察。已知:
(1)如果甲去五台山,则乙和丁都去五台山。
(2)如果甲去峨眉山,则丙和戊都去峨眉山。
(3)如果甲去九华山,则戊去九华山和普陀山。
根据以上信息,可以得出以下哪项?
A、甲去五台山和普陀山。
B、乙去五台山和峨眉山。
C、丙去九华山和五台山。
D、戊去普陀山和峨眉山。
E、丁去峨眉山和五台山。
某研究所甲、乙、丙、丁、戊5人拟定去我国四大佛教名山,普陀山、九华山、五台山、峨眉山考察。他们每人去了上述两座名山,其每座名山均有其中 2-3 人前往,丙、丁结伴考察。已知:
(1)如果甲去五台山,则乙和丁都去五台山。
(2)如果甲去峨眉山,则丙和戊都去峨眉山。
(3)如果甲去九华山,则戊去九华山和普陀山。
根据以上信息,可以得出以下哪项?
A、甲去五台山和普陀山。
B、乙去五台山和峨眉山。
C、丙去九华山和五台山。
D、戊去普陀山和峨眉山。
E、丁去峨眉山和五台山。
E
已知直线l⊥平面α,直线m⊂平面β,有下面四个命题:①α//β⇒l⊥m;②α⊥β⇒l//m;③l//m⇒α⊥β;④l⊥m⇒α//β.其中正确的两个命题是【 】
命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.命题A的等价命题B可以是:底面为正三角形,且____________________的三棱锥是正三棱锥.
设有不同的直线a,b和不同的平面α,β,γ.给出下列三个命题:①若a//α,b//α,则a//b;②若a//α,a//β,则α//β;③若α⊥β,β⊥γ,则α//β.其中正确的个数是【 】
在空间中,①若四点不共面,则这四点中任何三点都不共线.②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是______(把要求的命题序号都填上)
有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.
关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.
已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根
设x,y是实数,则有最小值和最大值【 】(1) (x-1)2+(y-1)2=1 (2) y=x+1
设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2
m,n,p是三个不同的质数,则能确定m,n,p乘积【 】(1) m+n+p=16(2) m+n+p=20
8班植树,共植195棵.则能确定各班植树棵树的最小值【 】(1)各班植树棵树均不相同.(2)各班植树棵树最大值28.
设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.
已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】