单项选择(2023年管理综合

设x,y是实数,则有最小值和最大值【 】

(1) (x-1)2+(y-1)2=1 (2) y=x+1

A、条件(1)充分,但条件(2)不充分

B、条件(2)充分,但条件(1)不充分

C、条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分

D、条件(1)充分,条件(2)也充分

E、条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分

答案解析

A

讨论

设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白,怎样确定画画的高与宽的尺寸,能使宣传画所用纸张面积最小?如果要求λ∈[2/3,3/4],那么λ为何值时,能使宣传画所用的纸张面积最小?

设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则【 】

下列函数中最小值为4的是【 】

若a>0,b>0,则1/a+a/b2 +b的最小值为__________.

已知a>0,函数f(x)=ax-xex.(1)求函数y=f(x)在点(0,f(0))处的切点的方程;(2)证明函数f(x)存在唯一极值点;(3)若存在a,使得f(x)≤a+b对任意的x∈R成立,求实数b的取值范围.

某生产队要建立一个形状是直角梯形的苗圃,其两邻边借用夹角为135°的两面墙,另外两边是总长为30米的篱笆(如图,AD和DC为墙),问篱笆的两边各多长时,苗圃的面积最大?最大面积是多少?

某工厂科研小组,对一项生产工艺过程总结出产量指标函数和消耗指标函数分别为:f1 (x)=ax2+1/2 x+C和f2 (x)=ax2+bx+5/4,且知f1 (-1)=f2 (-1)=f1 (3)=f2 (3)=2.(1)分别求出产量指标函数f1 (x)和消耗指标函数f2 (x)的具体表达式;(2)问因素x取何值时,f1 (x)和f2 (x)有最大值或最小值,最大值或最小值各是多少?(3)画出所求出的函数的略图.

将2006表示成5个正整数x1,x2,x3,x4,x5之和.记S=∑1≤i<j≤5xi xj .问:(1)当x1,x2,x3,x4,x5取何值时S取到最大值?(2)进一步地,对任意1≤i<j≤5有|xi-xj |≤2,当x1,x2,x3,x4,x5取何值时,S取到最小值?说明理由.

已知函数f(x)=2x3-9x2+ax+5在x=1处取得极大值,在x=b处取得极小值,则a+b的值为【 】

如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从A孔流人,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问:当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计)?