已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件
已知 α, β ∈ R, 则“存在 k ∈ Z 使得 α = kπ + (−1)kβ”是“sin α = sin β”的【 】
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件
C
在等差数列 {an} 中, a1 = −9, a5 = −1. 记 Tn = a1a2 · · · an (n = 1, 2, · · · ), 则数列 {Tn}【 】
设抛物线的顶点为 O, 焦点为 F , 准线为 l. P 是抛物线上异于 O 的一点, 过 P 作 PQ ⊥ l 于 Q, 则线段 FQ 的垂直平分线【 】
已知函数 f(x) = 2x − x − 1, 则不等式 f(x) > 0 的解集是【 】
已知半径为 1 的圆经过点 (3, 4), 则其圆心到原点的距离的最小值为【 】
某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为【 】
在复平面内, 复数 z 对应的点的坐标是 (1, 2), 则 i · z =【 】
论说文:根据下述材料写一篇 700 字左右的论说文,题目自拟。人们常说:“领导艺术”。可见领导与艺术之间存在着某种相似点,如领导一个团队完成某项任务就像指挥一个乐队演奏某首乐曲一样。
用数学归纳法证明下列恒等式 1³+2³+3³+⋯+n³=[n(n+1)/2]²
用数学归纳法求下列级数1/(1×2)+1/(2×3 )+1/(3×4)+⋯至n项之和.
已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】
已知命题p:∃x∈R,sinx<1,命题q:∀x∈R,e|x| ≥1,则下列命题中为真命题的是【 】
给定整数n≥2,设M0 (x0,y0)是抛物线y2=nx-1与直线y=x的一个交点.试证明对任意正整数m,必存在整数k≥2,使(x0m,y0m)为抛物线y2=kx-1与直线y=x的一个交点.
有体育、美术、音乐、舞蹈4个兴趣班,每名同学至少参加 2个.则至少有 12 名同学参加的兴趣班完全相同【 】(1)参加兴趣班的同学共有 125人.(2)参加2个兴趣班的同学有 70人.
关于x的方程x²-px+q=0有两个实根a,b,则p-q>1【 】(1) a>1. (2) b<1.
已知等比数列{an}的公比大于1,则{an}单调上升【 】(1) a1是方程 x2-x-2=0的根(2) a1是方程x2+x-6=0的根
设x,y是实数,则有最小值和最大值【 】(1) (x-1)2+(y-1)2=1 (2) y=x+1
设集合M={(x,y)│(x-a)²+(y-b)²≤4},N={(x,y)|x>0,y>0},则M∩N≠∅【 】(1) a<-2 (2) b>2
m,n,p是三个不同的质数,则能确定m,n,p乘积【 】(1) m+n+p=16(2) m+n+p=20
8班植树,共植195棵.则能确定各班植树棵树的最小值【 】(1)各班植树棵树均不相同.(2)各班植树棵树最大值28.