问答题(2020年山东省

已知椭圆 C : x2/a2 +y2/b2  = 1 (a > b > 0) 的离心率为/2 , 且过点 A(2, 1).

(1) 求 C 的方程;

(2) 点 M, N 在 C 上, 且 AM ⊥ AN, AD ⊥ MN, D 为垂足. 证明: 存在定点 Q, 使得 |DQ| 为定值.

答案解析

(1) 由题设得 4/a2 +1/b2 = 1, (a2-b2)/a2 =1/2 , 解得 a2 = 6, b2 = 3.所以 C 的方程为 x2/6+y2/3= 1.(2) 设 M(x1, y1), N(x2, y2)若直线 MN 与 x 轴不垂直, 设直线 MN 的方程为 y = kx + m, 代入 x2/6+y2/3= 1, 得(1 + 2k2)x2 + 4kmx + 2m2 − 6 = 0.于是x1 + x2 = -4km/(1+2k2 ), x1x2 =(2m2-6)/(1+2k2 ) . ①由 AM ⊥ AN 知• = 0, 故 (x1 − 2)(x2 − 2) + (y1 − 1)(y2 − 1) = 0, 可得(k2 + 1) x1x2 + (km − k − 2) (x1 + x2) + (m − 1)2 + 4 = 0.将 ① 代入上式可得(k2+1)(2m2-6)/(1+2k2 ) -(km-k-2)4km/(1+2k2 )+ (m − 1)2 + 4 = 0整理得(2...

查看完整答案

讨论

已知椭圆x2/6+y2/3=1,直线l与椭圆在第一象限交于A,B两点,与x轴,y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2√3,则直线l的方程为___________.

椭圆C:x2/a2 +y2/b2 =1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为1/4,则C的离心率为【 】

已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】

已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,-2),B(3/2,-1)两点.(1)求E的方程;(2)设过点P(1,-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足(MT)→=(TH)→.证明:直线HN过定点.

已知椭圆: E:x2/a2 +y2/b2 =1(a>b>0)的一个顶点为A(0,1),焦距为2√3.(1)求椭圆E的方程;(2)过点P(-2,1)作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当|MN|=2时,求k的值.

如图,已知椭圆x2/12+y2=1.设A,B是椭圆上异于P(0,1)的两点,且点Q(0,1/2)在线段AB上,直线PA,PB分别交直线y=-1/2 x+3于C,D两点. (1)求点P到椭圆上点的距离的最大值;(2)求|CD|的最小值.

已知Γ:x2/a2 +y2/b2 =1(a>b>0)的左、右焦点分别为F1 (-√2,0),F2 (√2,0),A为Γ的下顶点,M为直线l:x+y-4√2=0上一点.(1)若a=2,AM的中点在x轴上,求点M的坐标;(2)直线l交y轴于点B,直线AM经过点F2,若△ABM有一个内角的余弦值为3/5,求b;(3)若椭圆Γ上存在点P到直线l的距离为d,且满足d+|PF1 |+|PF2 |=6,当a变化时,求d的最小值.

已知常数a>0,在矩形ABCD中,AB=4,BC=4a,O为AB的中点,点E,F,G分别在BC,CD,DA上移动,且BE/BC=CF/CD=DG/DA,P为GE与OF的交点(如图).问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.

已知椭圆方程x2/a2 +y2/b2 =1,F为右焦点,A为右顶点,B为上顶点,|BF|/|AB| =√3/2.(1)求椭圆的离心率e;(2)已知直线l与椭圆有唯一交点M,直线l交y轴于点N,|OM|=|ON|,∆OMN的面积为√3,求椭圆的标准方程.

试求经过二曲线 x²+2y² - 4x - 2y -6 =0及y² +xy-8 =0之交点且与x轴相切之圆锥曲线方程式.