问答题(2022年天津市

在∆ABC中,a=√6,b=2c,cosC=-1/4.

(1)求∠C的大小;

(2)求sinB的值;

(3)求sin⁡(2A-B)的值.

答案解析

(1)因为a=√6,b=2c,cosA=-1/4,由余弦定理可得cosA=(b2+c2-a2)/2bc=(4c2+c2-6)/(4c2 )=-1/4,解得:c=1.(2) cosA=-1/4,A∈(0,π),所以sinA==√15/4,由b=2c,可得sinB=2sinC,由正弦定理可得:a/sinA=c/sinC,即√6/(√15/4)=1/sinC,可得sinC=√10/8,所以s...

查看完整答案

讨论

已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1).一质点从AB的中点P_0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD,DA和AB上的点P2,P3和P4(入射角等于反射角).设P4的坐标为(x4,0).若1<x4<2,则tanθ的取值范围是【 】

在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南θ(θ=arccos⁡(√2/10))方向300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.问几小时后该城市开始受到台风的侵袭?

已知在△ABC中,A+B=3C,2 sin⁡(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.

记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为√3,D为BC的中点,且AD=1.(1)若∠ADC=π/3,求tanB;(2)若b²+c²=8,求b,c.

在△ABC中,(a+c)(sinA-sinC)=b(sinA-sinB),则∠C=【 】

△ABC 的内角为 A, B, C 的对边分别为 a, b, c, 已知 B = 150◦.(1) 若 a = c, b = 2, 求 △ABC 的面积;(2) 若 sin A + sin C =/2 , 求 C.

△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.

△ABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 cos2(π/2 + A) + cos A = 5/4.(1) 求 A.(2) b − c =/3a, 证明: △ABC 是直角三角形.

在 △ABC 中, cosC =2/3, AC = 4, BC = 3, 则 tanB =【 】

已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】