设三角函数f(x)=sin(kx/5+π/3),其中k≠0.
(Ⅰ) 写出f(x)的极大值M 、极小值 m 与最小正周期T;
(Ⅱ) 试求最小的正整数k,使得当自变量 x 在任意两个整数间(包括整数本身)变化时,函数f(x)至少有一个值是 M 与一个值是 m .
证明对数换底公式:logbN=logaN/logab.(a,b,N都是正数,a≠1,b≠1)
半径为 1 , 2 , 3 的三个圆两两外切.证明:以这三个圆的圆心为顶点的三角形是直角三角形.
将多项式x5y-9xy5分别在下列范围内分解因式:1. 有理数范围; 2. 实数范围;3. 复数范围.
试问数列:lg100,lg(100sinπ/4),lg(100sin2π/4),⋯,lg(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)
设 CEDF 是一个已知圆的内接矩形,过 D 作该圆的切线与 CE 的延长线相交于点 A ,与 CF 的延长线相交于点 B . 求证:BF/AE=BC3/AC3 .