美国的物价从 1939 年的 100 增到四十年后 1979年的 500 ,如果每年物价增长率相同,问每年增长百分之几?(注意:自然对数 Inx 是以 e = 2.718 … 为底的对数.本题中增长率 x < 0.1,可用自然对数的近似公式:ln(1+x)≈x,取lg2=0.3 , In10=2.3 来计算.)
若 2a + log2a = 4b + 2log4b, 则【 】
已知函数 f(x) = ex − a(x + 2),(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 若 f(x) 有两个零点, 求 a 的取值范围.
已知函数f(x)=(2x-1)/(2x+1).(Ⅰ)证明: f(x)在(-∞,+∞)上是增函数;(Ⅱ)证明对于任意不小于3的自然数n,都有f(n)>n/(n+1).
设a>0,f(x)=ex/a+a/ex 是R上的偶函数.(Ⅰ)求a的值.(Ⅱ)证明f(x)在(0,+∞)上是增函数.
已知a>0且a≠1,函数f(x)=xa/ax (x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.
已知函数f(x)=xeax-ex.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<-1,求a的取值范围;(3)设n∈N^*,证明:1/+1/+⋯+1/>ln( n+1).
已知a=20.7,b=(1/3)0.7,c=log2(1/3),则a,b,c的大小关系为【 】
对于正整数m(m≥2),使得m12的n次方根为整数的正整数n(n>2)的个数记为f(m),则f(m)的值为【 】
对于正整数n,函数f(x)定义如下:f(x)=对于实数t,记方程f(x)=t的不同实数解的数量为g(t),求使得函数g(t)的最大值为4的所有正整数n的和.