设α,β为x²+mx+m²+a=0的二根,则α²+αβ+β²+a=0.
试证三角形∠A之内角平分线之长为2bc∙cos(A/2)/(b+c).
已知椭圆之方程为x²+9y²=40, 此椭圆存二切线与直线9x-y=0垂直,试求此二切线方程.
i) 设直线ax+by+c=0,经过点(5,-4).求其系数a,b,c须满足的条件.ii)设直线ax+by+c=0,至原点之距离为 1,求其系数a,b,c须满足的条件.
试讨论方程y=x(x²-1)之图形:i) 对于原点、x轴、y轴对称否.ii) 与x轴之交点如何? 并作图.
试从x=by+cz,y=cz+ax,z=ax+by,消去x,y,z.求a,b,c间的关系式.
方程12x³-28x²+17x-3=0之根为a,b,c,已知b=a+1,求a,b,c.
证明: cos(α+β-γ)+cos(α-β+γ)-cos(β+γ-α)-cos(α+β+γ)=4cosα∙sinβ∙sinγ.
方程式 x³ - 9x² + 23x - 15 =0之诸根成为等差级数,试求之.
二次方程式 x² +px +q = 0 有二相异实根时,若 k 为不等于 0 之常数,则方程式 x² +px + g + k(2x + p) = 0 亦有二实根且仅有一根在前二根之间,试证之.
已知方程式2x³+x²+3x+5=0之根为a,b,c,试用变换方程式法求以a(1/b+1/c),b(1/c+1/a),c(1/a+1/b)为根之方程式.
解方程式x5-5x4-5x3+25x2+4x-20=0,已知各根为a,-a,b,-b,c等形式.
鸡蛋每个 80 元,鹅蛋每个 90 元,鸭蛋每个 70 元,用 9700 元买三种蛋共 120个,求各种蛋的个数.
解下列联立方程式x² - 4y² +x + 3y = 2x -y = 1
若x1,x2为方程式2x2-5x+3=0之二根,试求以x1/x2 与x2/x1 为根之方程式.