问答题(1949年南开大学

已知一级数第n项为lg⁡,试求此级数前几项之和.

答案解析

暂无答案

讨论

设{an}是首项为1的正项数列,且(n+1) - n+an+1an=0(n=1,2,3⋅⋅⋅),则它的通项公式是an=______.

在xOy平面上有一点列P1 (a1,b1 ),P2 (a2,b2 ),…,Pn (an,bn)对每个自然数n,点Pn位于函数y=2000∙(a/10)x (0<a<10)的图像上,且点Pn、点(n,0)与点(n+1,0)构成一个以Pn为顶点的等腰三角形.(I)求点Pn的纵坐标bn的表达式.(Ⅱ)若对每个自然数n,以bn,bn+1,bn+2为边长能构成一个三角形,求a的取值范围.(Ⅲ)设Bn=b1 b2…bn (n∈N).若a取(Ⅱ)中确定的范围内的最小整数,求数列{Bn}的最大项的项数.

设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.

某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm, 10dm×6dm,24dm×3dm,三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为______;如果对折n次,那么 Sk=________dm2.

已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.

数列{an}是递增的整数数列,且a1≥3,a1+a2+⋯+an=100,则n的最大值为【 】

定义Rp数列{an}:对p∈R满足:①a1+p≥0,a2+p=0;②∀n∈N*,a4n-1<a4n;③∀m,n∈N*,am+n∈{am+an+p,am+an+p+1}.(1)对前4项2,-2,0,1的数列,可以是R2数列吗?说明理由;(2)若{an}是R0数列 ,求a5的值;(3)是否存在p∈R,使得存在Rp数列{an},对∀n∈N*满足Sn≥S10?若存在,求出所有这样的p;若不存在,说明理由.

已知ai∈N* (i=1,2,…,9)对任意的k∈N* (2≤k≤8),ak=ak-1+1或ak=ak+1-1中有且仅有一个成立,a1=6,a9=9,则a1+⋯+a9的最小值为__________.

已知{an}是公差为2的等差数列,其前8项的和为64,{bn}是公比大于0的等比数列,b1=4,b3-b2=48.(1)求{an}和{bn}的通项公式;(2)记cn=b2n+1/bn ,n∈N*(i)证明{cn2-c2n}是等比数列;(ii)证明<2√2.

已知数列{an}满足a1=1,an+1= (n∈N* ).记{an}的前n项和为Sn,则【 】