已知{an}是等比数列,如果a1+a2+a3=18,a2+a3+a4=-9,且Sn=a1+a2+⋯+an,那么Sn 的值等于【 】
A、8
B、16
C、32
D、48
cos[arcsin(-4/5)-arccos(-3/5)]的值等于【 】
如果I={a,b,c,d,e},M={a,c,d},N={b,d,e},其中I是全集,那么M ̅∩N ̅等于【 】
给定实数a,a≠0,a≠1,设函数y=(x-1)/(ax-1)(x∈R,x≠1/a).证明:(Ⅰ)经过这个函数图像上任意两个不同的点的直线不平行于x轴;(Ⅱ)这个函数的图像关于直线y=x成轴对称图形.
设a>0,a≠1,t>0,比较1/2logat与loga (t+1)/2的大小,并证明你的结论.
如图,正三棱锥S-ABC的侧面是边长为a的正三角形,D是SA的中点,E是BC的中点,求△SDE绕直线SE旋转一周所得到的旋转体的体积.
已知tanx=a,求(3sinx+sin3x)/(3cosx+cos3x)的值.
已知等比数列{an}的公比q>1,并且a1=b(b≠0),求(a1+a2+a3+⋯+an)/(a6+a7+a8+⋯+an ).
求极限[1/(n2+1)+2/(n2+1)+3/(n2+1)+⋯2n/(n2+1)].
已知x1>0,x≠1,且xn+1=,(n=1,2,⋯).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1.
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(Ⅰ)证明:{an - 1} 是等比数列;(Ⅱ)求数列{Sn}的通项公式。请指出n为何值时,Sn取得最小值,并说明理由.
试问数列:lg100,lg(100sinπ/4),lg(100sin2π/4),⋯,lg(100sinn-1π/4),前多少项的和的值最大?并求出这大值(这里取lg2=0.301)
如图,已知二面角α-AB-β的平面角是锐角,C是平面α内的一点(它不在棱AB上),点D是点C在平面β上的射影,点E是棱AB上满足∠CEB为锐角的任意一点,那么【 】.
假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有2件次品的抽法有【 】种.
如果曲线x2-y2-2x-2y-1=0经过平移坐标轴后的新方程为x'2-y'2=1,那么新坐标系的原点在原坐标系中的坐标为【 】
在复平面内,若复数z满足|z+1|=|z-i|,则z所对应的点Z的集合构成的图形是【 】
设命题甲:△ABC的一个内角为60°. 命题乙:△ABC的三内角的度数成等差数列. 那么【 】