问答题(2020年上海市

已知有限数列 {an} 项数为 m, 若其满足: |a1 − a2| ⩽ |a1 − a3| ⩽ · · · ⩽ |a1 − am|, 则称数列 {an} 满足性质 P .

(1) 判断数列 3, 2, 5, 1 和数列 4, 3, 2, 5, 1 是否具有性质 P ;

(2) 已知 a1 = 1, 公比为 q 的等比数列, 项数为 10, 具有性质 P , 求 q 的取值范围;

(3) 若 an 是 1, 2, 3, · · · , m (m ⩾ 4) 的一个排列, bk = ak+1 (k = 1, 2, 3 · · · , m − 1), 数列 {an}, {bn} 都具有性质 P , 求所有满足条件的 {an}.

答案解析

(1) 对于第一个数列有 |2 − 3| = 1, |5 − 3| = 2, |1 − 3| = 2, 满足题意, 所以数列 3, 2, 5, 1 具有性质 P .对于第二个数列有 |3 − 4| = 1, |2 − 4| = 2, |5 − 4| = 1, 不满足题意, 所以数列 4, 3, 2, 5, 1 不具有性质 P .(2) 当 q > 0 时, 明显具有性质 P .由题意得 |qn − 1| ⩾ |qn−1 − 1 |, n ∈ {2, 3, · · · , 9}. 两边平方得 qn − 2qn + 1 ⩾ q2n−2 − 2qn−1 + 1, 整理得(q − 1)qn−1[qn−1(q + 1) − 2] ⩾ 0.当 −1 ⩽ q < 0 时, qn−1[qn−1(q + 1) − 2] ⩽ 0.当 n 为奇数时, qn−1(q + 1) − 2 ⩽ 0, 很明显成立; 当 n 为偶数时, qn−1(q + 1) − 2 ⩾ 0, 很明显不成立.所以, 当 −1 ⩽ q < 0 时, 矛盾, 舍去.当 q < −1 时, qn−1[qn−1(q + 1) − 2] ⩽ 0.当 n 为奇数时, qn−1(q + 1) − 2 ⩽ 0, 很明显成立; 当 n 为偶数时,要使 qn−1(q + 1) − 2 ⩾ 0 恒成立.所以, 等价于 n = 2 时, q(q + 1) − 2 ⩾ 0, (q + 2)(q − 1) ⩾ 0. 所以 q ⩽ −2 或 q ⩾ 1, 所以取 q ⩽ −2 .综上, q ∈ (−∞, −2] ∪ (0, +∞).(3) 设 a1 = p, p ∈ {3, 4, · · · , m − 3, m − 2}.因为 a1 = p, a2 可以取 p − 1 或 p + 1, a3 可以取 p − 2 或 p + 2.如果 a2 或 a3 取了 p − 3 或 p + 3, 将使 {an} 不满足性质...

查看完整答案

讨论

双曲线C1: x2/4-y2/b2 =1 与圆 C2 : x2 + y2 = 4 + b2 (b > 0) 交于点 A(xA, yA), 曲线 Γ 满足 x > |xA| 并在曲线 C1、C2 上.(1) 若 xA=, 求 b 的值;(2) b =, 圆 C2 与 x 轴交于点 F1, F2, P 在第一象限, |PF1| = 8, 求 ∠F1PF2;(3) 点 D(0,b2/2+2), 过该点的直线斜率为 -b/2 的直线 l 和 Γ 只有两个交点, 记作 M, N, 用 b 表示 ∙,并求其取值范围.

在研究某市交通情况时, 道路密度是指该路段上一定时间内通过的车辆数除以时间, 车辆密度是该路段一定时间内通过的车辆数除以该路段的长度. 现定义交通流量为 v=q/x(x, q 分别是道路密度和车辆密度, 且 x ∈(0, 80]). 据调查某路段的交通流量有如下规律:,(k > 0).求: (1) 若交通流量 v 大于 95, 求 x 的取值范围;(2) 已知道路密度为 80 时, 交通流量为 50. 问 x 多少的时候 q 最大?

已知 f(x) = sinωx, ω> 0.(1) T = 4π, 求ω及f(x)=1/2时的解集;(2) ω = 1, g(x)=[f(x)]2-f(-x)f(π/2-x), 求 x∈[0,π/4] 时 g(x) 的值域.

已知 ABCD 是边长为 1 的正方形, 绕其中一条轴 AB 旋转成一个圆柱.(1) 求该圆柱的表面积;(2) 将 DC 旋转 90° 至 C1D1, 求线 C1D 与平面 ABCD 的夹角.

命题 p : 存在 a≠ 0, 对于任意的 x, 使 f(x + a) < f(x) + f(a); 命题 q1 : f(x) 为单调递减函数且 f(x) > 0恒成立; 命题 q2 : f(x) 为单调递增函数且存在 x0 < 0, 使 f(x0) = 0. 则下列说法正确的是【 】

在棱长为 10 的正方体 ABCD − A1B1C1D1 中, P 为左侧面 ADD1A1 上一点, 已知点 P 到 A1D1 的距离为 3, 点 P 到 AA1 的距离为 2, 则过点 P 且与 A1C 平行的直线交正方体于 P、 Q 两点, 则 Q 点所在的平面是【 】

已知直线 l 的解析式为 3x − 4y + 1 = 0, 则下列各式是 l 的参数方程的是【 】

已知 a, b ∈ R, 则下列各式正确的是【 】

设 k ∈ N∗, 已知平面向量 a1, a2, b1, b2, · · · , bk 两两不同, |a1 − a2| = 1. 对于任意 i = 1, 2, j = 1, 2, 3,· · · , k, |ai − bj| ∈ {1, 2}, 则 k 的最大值是_______________.

设 a ∈ R, 若存在定义域为 R 的函数 f(x) 满足: ① 对任意 x0 ∈ R, f(x0) 的值为 x02 或 x0; ② 关于 x 的方程 f(x) = a 无实数解. 则 a 的取值范围是_______________.

嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{bn}:b1=1+ ,b2=1+,b3=1+,…,依此类推,其中αk∈N* (k=1,2,⋯).则【 】

己知数列{an}各项均为正数,其前n项和Sn满足an⋅Sn=9(n=1,2,⋯).给出下列四个结论:①{an}的第2项小于3; ②{an}为等比数列;③{an}为递减数列; ④{an}中存在小于1/100的项.其中所有正确结论的序号是__________.

已知Q:a1,a2,⋯,ak为有穷整数数列.给定正整数m,若对任意的n∈{1,2,⋯,m},在Q中存在ai,ai+1,ai+2,⋯,ai+j (j≥0),使得ai+ai+1+ai+2+⋯+ai+j=n,则称Q为m-连续可表数列.(1)判断Q:2,1,4是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若Q:a1,a2,⋯,ak为8-连续可表数列,求证:k的最小值为4;(3)若Q:a1,a2,⋯,ak为20-连续可表数列,且a1+a2+⋯+ak<20,求证:k≥7.

数列{an}中,a1=1,a2=3,若地任意n(n≥2)都存在正整数i(1≤i≤n-1)使得an+1=2an-ai.(1)求a4的所有可能值.(2)命题p:若a1,a2,a3,…,a8成等差数列,则a9<30,证明命题p为真;写出p的逆命题q,并判断q的真假,若命题q为真则证明,若命题q为假,请举出反例.(3)若对任意正整数m,a2m=3m,求数列{an}的通项公式.

求级数1/(1×3)+1/(3×5)+1/(5×7)+⋯ n项及无穷项之和.其第n项为1/(2n-1)(2n+1).

有相交之二直线 a 及 b,自 a 上之一点作 b 之垂线,复自其在 b 上之垂足向 a作垂线,更自第二个垂足作 b 之垂线,如此继续作成无数根垂线,设第一垂线之长为 7,第二垂线之长为 6,求此无数垂线长之和.

设a,b,c三数成调和级数,试证1/a+1/c+1/(a-b)+1/(c-b)=0.

问级数1-x/√1+x²/√2-x³/√3+⋯何时收敛?

试述无穷级数为收敛或发散之定义 (definition of convergence or divergence)并讨论普遍项 (general term) 如下之二无穷级数,何时为收?何时为发散?(1) Un=xn+1 [log⁡(n+1) ]q(log 表以e 为底之对数)(2) Un=xn (cosn⁡θ+cosn-1⁡θ sinθ+cosn-2⁡θ sin2⁡θ+⋯+sinn⁡θ )(0<θ<π/4)

设a1,a2,a3,⋯,an成调和级数,试证:a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an