有相交之二直线 a 及 b,自 a 上之一点作 b 之垂线,复自其在 b 上之垂足向 a作垂线,更自第二个垂足作 b 之垂线,如此继续作成无数根垂线,设第一垂线之长为 7,第二垂线之长为 6,求此无数垂线长之和.
有相交之二直线 a 及 b,自 a 上之一点作 b 之垂线,复自其在 b 上之垂足向 a作垂线,更自第二个垂足作 b 之垂线,如此继续作成无数根垂线,设第一垂线之长为 7,第二垂线之长为 6,求此无数垂线长之和.
暂无答案
记 Sn 为等比数列 {an} 的前 n 项和. 若 a5 − a3 = 12, a6 − a4 = 24, 则 Sn/an=【 】
在等差数列 {an} 中, a1 = −9, a5 = −1. 记 Tn = a1a2 · · · an (n = 1, 2, · · · ), 则数列 {Tn}【 】
已知数列 {an} 为不为零的等差数列, 且 a1 + a10 = a9, 则 (a1+a2+⋯+a9)/a10 =__________ .
已知等差数列 {an} 的前 n 项和为 Sn, 公差 d≠ 0, a1/d ⩽ 1. 记 b1 = S2, bn+1 = Sn+2 − S2n, n ∈ N∗, 下列不可能成立的是【 】
我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题, 如数列 {n(n+1)/2} 就是二阶等差数列,数列{n(n+1)/2} (n ∈ N∗) 的前 3 项和是________.
设数列{an}的通项为an=2n-7(n∈N),则|a1|+|a2|+⋯+|a15|=______.
已知数列{an}满足a1=1,an+1=(1)记bn=a2n,写出b1,b2,并求数列{bn}的通项公式;(2)求{an}的前20项和.
设正数数列{an },{bn}满足:a1=b1=1,bn=an bn-1-1/4(n≥2).求4+1/(a1 a2⋯ak )的最小值,其中m是给定的正整数.
在各项均为正数,且满足下列条件的数列{an}中,a9可能的最大值和最小值分别为M和m,则M+m的值为【 】(1) a7=40(2)对于任意正整数n,an+2=
数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.