设a1,a2,a3,⋯,an成调和级数,试证:
a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an
已知等差数列前三项为a,4,3a前n项的和为Sn,Sk=2550.(Ⅰ)求a及k的值,(Ⅱ)求 (1/S1 +1/S2 +⋯+1/Sn ).
已知等比数列{an}的前3项和为168,a2-a5=42,则a6=【 】
极限(C22+C32+C42+⋯+Cn2)/(n(C21+C31+C41+⋯+Cn1))=【 】
设正数数列{an },{bn}满足:a1=b1=1,bn=an bn-1-1/4(n≥2).求4+1/(a1 a2⋯ak )的最小值,其中m是给定的正整数.
在公比为正数的等比数列{an}中,a2+a4=30,a4+a6=15/2,则a1的值为【 】
在各项均为正数,且满足下列条件的数列{an}中,a9可能的最大值和最小值分别为M和m,则M+m的值为【 】(1) a7=40(2)对于任意正整数n,an+2=
数列{an },{bn}满足(3ak+5)=55,(ak+bk)=32,求bk 的值.
有三数原成等比级数,其和为9/2.若第一数以2/3乘之,第二数以2/3乘之,第三数以16/27乘之,则成等差级数,问原三数各几何?
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.
求级数1/(1×3)+1/(3×5)+1/(5×7)+⋯ n项及无穷项之和.其第n项为1/(2n-1)(2n+1).
设a,b,c三数成调和级数,试证1/a+1/c+1/(a-b)+1/(c-b)=0.
已知数列{an}满足an+1=1/4 (an-6)³+6(n=1,2,3,⋯),则【 】
已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
数列 {an} 满足 an+2 + (−1)nan = 3n − 1, 前 16 项和为 540, 则 a1 = ______.
数列 {an} 中, a1 = 2, am+n = aman , 若 ak+1 + ak+2 + · · · + ak+10 = 215 − 25, 则 k=【 】
设数列 {an} 满足 a1 = 3, an+1 = 3an − 4n.(1) 计算 a2, a3, 猜想 {an} 的通项公式并加以证明;(2) 求数列 {2nan} 的前 n 项和 Sn.