已知数列{an}满足:a1=1,a2=4,且an2 - an-1an+1=2n-1(n≥2,n∈N*),求a2020的个位数.
已知x,y,z>0,判断s=x/(x+y) + y/(y+z) + z/(z+x) 是否存在最大值与最小值.
已椭圆 +y2 =1,圆x2 + y2=4,从圆上一点作椭圆的切点弦,求切点弦所围成的面积.
若f(x)=x5+px+q有有理根,且正整数p,q不大于100,则满足条件的(p,q)共有几组.
正实数x,y,z,w满足x≥y≥w,且x+y≤2(w+z),求 + 的最小值.
已知函数 f(x) = |3x + 1| − 2|x − 1|.(1) 画出 y = f(x) 的图像;(2) 求不等式 f(x) > f(x + 1) 的解集.
已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.
设a1,a2,⋯为首项为7,公差为8的等差数列,对于∀n≥1,T1,T2,⋯满足T1=3,Tn+1-Tn=an,则以下选项正确的是【 】
有半径为R之圆C,于其直径AB上取其半B1 B为直径作一圆C1,又取B1 B之半B2 B为直径作一圆C2,更取B2 B之半B3 B为直径作一圆C3,如是无限推之,求C1,C2,C3,⋯无穷个圆周之和.
Find the sum of n terms of the series whose nth term is 3(4n+4n²)-5n³.
Find the general term and the sum ofn terms of the series -3,-1,11,39,89,167.
Find the sum of the arithmetical series 49,44,39,… to 17 terms.
Find the sum of the geometical series -2,,-1/3 to 6 terms.
设a,b,c三数成调和级数,试证1/a+1/c+1/(a-b)+1/(c-b)=0.
设a1,a2,a3,⋯,an成调和级数,试证:a1 a2+a2 a3+a3 a4+⋯+an-1 an=(n-1) a1 an
求2+22+23+⋯+2n之和,并利用之以证1+3×2+5×22+⋯+(2n-1)∙2n-1=3-2n+(n-1) 2n+1.
问θ为何种数值时,sinθ+sin2θ+⋯+sinnθ+⋯成一收敛级数.
若a1,a2,⋯,an为已知正数,试求atctan(a1-a2)/(1+a1 a2)+atctan(a2-a3)/(1+a2 a3)+⋯+atctan(an-1-an)/(1+an-1 an)的值.