问答题(2020年新高考Ⅰ·理2020年新高考Ⅰ·文

在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.

(1) 当 k = 1 时, C1 是什么曲线?

(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.

答案解析

(1) 当 k = 1 时, C1 : , 消去参数 t 得 x2 + y2 = 1.故曲线 C1 是圆心为坐标原点, 半径为 1 的圆.(2) 当 k = 4 时, C1 : , 消去参数 t 得...

查看完整答案

讨论

已知函数 f(x) = ex + ax2 − x.(1) 当 a = 1 时, 讨论 f(x) 的单调性;(2) 当 x ⩾ 0 时, f(x) ⩾ x3 + 1, 求 a 的取值范围.

已知 A, B 分别为椭圆 E : +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点, = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.(1) 求 E 的方程;(2) 证明: 直线 CD 过定点.

甲、乙、丙三位同学进行羽毛球比赛, 约定赛制如下:累计负两场者被淘汰; 比赛前抽签决定首先比赛的两人, 另一人轮空; 每场比赛的胜者与轮空者进行下一场比赛, 负者下一场轮空, 直至有一人被淘汰; 当一人被淘汰后, 剩余的两人继续比赛, 直至其中一人被淘汰, 另一人最终获胜, 比赛结束.经抽签, 甲、乙首先比赛, 丙轮空. 设每场比赛双方获胜的概率都为 1/2.(1) 求甲连胜四场的概率;(2) 求需要进行第五场比赛的概率;(3) 求丙最终获胜的概率.

如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为底面直径, AE = AD. △ABC 是底面的内接正三角形,P 为 DO 上一点, PO = DO.(1) 证明: PA ⊥ 平面 PBC;(2) 求二面角 B − PC − E 的余弦值.

设 {an} 是公比不为 1 的等比数列, a1 为 a2, a3 的等差中项.(1) 求 {an} 的公比;(2) 若 a1 = 1, 求数列 {nan} 的前 n 项和.

如图, 在三棱锥 P − ABC 的平面展开图中, AC = 1, AB = AD = , AB ⊥ AC, AB ⊥ AD,cos ∠CAE = 30◦, 则 cos ∠FCB = __________.

已知 F 为双曲线 C : =1 (a > 0, b > 0) 的右焦点, A 为 C 的右顶点, B 为 C 上的点, 且 BF垂直于 x 轴. 若 AB 的斜率为 3, 则 C 的离心率为 __________.

设 a, b 为单位向量, 且 |a + b| = 1, 则 |a − b| =__________.

若 x, y 满足约束条件 则 z = x + 7y 的最大值为 __________.

若 2a + log2a = 4b + 2log4b, 则【 】

在直角坐标系xOy中,参数方程(其中t参数)表示的曲线是【 】

已知 C1, C2 的参数方程分别为 C1 :(θ为参数), C2 : (t 为参数) ,(1) 将 C1, C2 的参数方程化为普通方程;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 C1, C2 的交点为 P , 求圆心在极轴上, 且经过极点和 P 的圆的极坐标方程.

已知直线 l 的解析式为 3x − 4y + 1 = 0, 则下列各式是 l 的参数方程的是【 】

设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?

在平面直角坐标系内,下述方程表示什么曲线?画出它的图形.

设m为正整数,数列a1,a2,⋯,a4m+2是公差不为0的等差数列,若从中删去两项ai和aj (i<j)后剩余的4m项可被平均分为m组,且每组的4个数都能构成等差数列,则称数列a1,a2,⋯,a4m+2是(i,j)—可分数列.(1)写出所有的(i,j),1≤i<j≤6,使数列a1,a2,⋯,a6是(i,j)—可分数列;(2)当m≥3时,证明:数列a1,a2,⋯,a4m+2是(2,13)—可分数列;(3)从1,2,⋯,4m+2中一次任取出两个数i和j(i<j),记数列a1,a2,⋯,a4m+2是(i,j)—可分数列的概率为Pm,证明:Pm>1/8.

甲乙各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分.然后各自弃置此轮所选的卡片(弃置的卡片在此后的伦次中不能使用),则四轮比赛后,甲的总得分不小于乙的概率为______.

从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为【 】

一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好 良好病例组 40 60对照组 10 90(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(P(B|A))/(P(B ̄|A))与(P(B|A ̄))/(P(B ̄|A ̄))的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:R=P(A|B)/P(A ̄|B)⋅P(A ̄|B ̄)/P(A|B ̄);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̄)的估计值,并利用(ⅰ)的结果给出R的估计值.附:K2=n(ad-bc)2/((a+b)(c+d)(a+c)(b+d)),P(K2≥k) 0.050 0.010 0.001k 3.841 6.635 10.828

有一组样本数据x1,x2,⋯,x6,其中x1是最小值,x6是最大值,则【 】