单项选择(1997年全国统考

曲线的参数方程是(t是参数,t≠0),它的普通方程是【 】

A、(x - 1)2(y-1)=1

B、y=x(x - 2)/(1 - x)2

C、y=1/(1 - x)2 -1

D、y=x/(1 - x2 )+1

答案解析

B

讨论

某中学开展劳动实习, 学生加工制作零件, 零件的截面如图所示. O 为圆孔及轮廓圆弧 AB 所在圆的圆心, A 是圆弧 AB 与直线 AG 的切点, B 是圆弧 AB 与直线 BC 的切点, 四边形 DEFG 为矩形, BC⊥DG, 垂足为 C, tan∠ODC = 3/5, BH//DG, EF = 12cm, DE = 2cm, A 到直线 DE 和 EF 的距离均为 7 cm, 圆孔半径为 1 cm, 则图中阴影部分的面积为 __________c㎡.

在直角坐标系xOy中,参数方程(其中t参数)表示的曲线是【 】

圆锥曲线ρ=8sinθ/cos2⁡θ 的准线方程是【 】

已知 C1, C2 的参数方程分别为 C1 :(θ为参数), C2 : (t 为参数) ,(1) 将 C1, C2 的参数方程化为普通方程;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 C1, C2 的交点为 P , 求圆心在极轴上, 且经过极点和 P 的圆的极坐标方程.

在直角坐标系 xOy 中, 曲线 C1 的参数方程为 (t 为参数). 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 曲线 C2 的极坐标方程为 4ρcosθ−16ρsinθ + 3 = 0.(1) 当 k = 1 时, C1 是什么曲线?(2) 当 k = 4 时, 求 C1 与 C2 的公共点的直角坐标.

直线(t为参数)的倾斜角是【 】

设直线(l)的参数方程是 (t是参数)椭圆(E)的参数方程是 (θ是参数)问:a,b应满足什么条件,使得对于任意m值来说,直线(l)与椭圆(E)总有公共点?

在平面直角坐标系内,下述方程表示什么曲线?画出它的图形.

画出极坐标方程(ρ-2)(θ-π/4)=0(ρ>0)的曲线.

曲线的参数方程为(0≤t≤5),则曲线是【 】