问答题(2020年新高考Ⅰ·理2020年新高考Ⅰ·文

已知 A, B 分别为椭圆 E :  +y2 = 1(a > 1) 的左、右顶点, G 为 E 的上顶点,  = 8, P 为直线 x = 6上的动点, PA 与 E 的另一交点为 C, PB 与 E 的另一交点为 D.

(1) 求 E 的方程;

(2) 证明: 直线 CD 过定点.

答案解析

(1) 由题设得 A(−a, 0), B(a, 0), G(0, 1), 则 = (a, 1), = (a, −1) .由 · = 8 得 a2 − 1 = 8, 即 a = 3. 所以 E 的方程为 + y2 = 1.(2) 设 C(x1, y1), D(x2, y2), P (6, t).若 t ≠ 0, 设直线 CD 的方程为 x = my + n, 由题意可知 −3 < n < 3. 由于直线 PA 的方程为 y = (x + 3), 所以 y1 = (x1 + 3). 直线 PB 的方程为 y = (x − 3), 所以 y2 = (x2 − 3). 可得 3y1(x2 − 3) = y2(x1 + 3).由于+ = 1, 故 = − , 可得 27y1y2...

查看完整答案

讨论

已知二次函数y=x2﹣6x+5.(1)求出它的图象的顶点坐标和对称轴方程;(2)画出它的图象;(3)分别求出它的图象和x轴、y轴的交点坐标.

已知O为坐标原点,点A(1,1)在抛物线C:x2=2py(p>0)上,过点B(0,-1)的直线交C于P,Q两点,则【 】

设抛物线C:y2=2px(p>0)的焦点为F,点D(p,0),过F的直线交C于M,N两点.当直线MD垂直于x轴时,|MF|=3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为α,β.当α-β取得最大值时,求直线AB的方程.

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

设F为抛物线C:y2=4x的焦点,点A在C上,点B(3,0),若|AF|=|BF|,则|AB|=【 】

已知双曲线y2+x2/m=1的渐近线方程为y=±√3/3 x,则m=__________.

已知双曲线x2/a2 -y2/b2 =1(a>0,b>0)的左焦点为F,过F且斜率为b/4a的直线交双曲线于点A(x1,y1 ),交双曲线的渐近线于点B(x2,y2 )且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是_________.

双曲线x2/9-y2=1的实轴长为________.

已知双曲线中心在原点,且一个焦点为F(√7,0),直线y=x-1与其相交于M,N两点,MN的中点横坐标为-2/3,则此双曲线的方程是【 】

已知椭圆方程x2/a2 +y2/b2 =1,F为右焦点,A为右顶点,B为上顶点,|BF|/|AB| =√3/2.(1)求椭圆的离心率e;(2)已知直线l与椭圆有唯一交点M,直线l交y轴于点N,|OM|=|ON|,∆OMN的面积为√3,求椭圆的标准方程.

定义椭圆x2/a2 +y2/b2 =1的辅助圆为x2+y2=a2.考虑椭圆x2/4+y2/3=1,点H(a,0),0<a<2. 在第一象限内,过H平行于y轴的直线与椭圆交于点E,与椭圆的辅助圆交于点F,椭圆在点E处的切线与x轴正半轴交于点G,过原点和F的直线与x轴正半轴的夹角为φ.列Ⅰ 列Ⅱ(Ⅰ)若φ=π/4,则△FGH的面积为 (P) (√3-1)4/8(Ⅱ)若φ=π/3,则△FGH的面积为 (Q) 1(Ⅲ)若φ=π/6,则△FGH的面积为 (R) 3/4(Ⅳ)若φ=π/12,则△FGH的面积为 (S) 1/(2√3) (T) (3√3)/2正确的选项为【 】

英:Find the equations to the tangents to the ellipse 3x²+ y² = 3, inclined at angle of 45° to the axis of x.汉:求椭圆 3x²+y²=3之与x轴夹角为 45°的切线方程.

Find the locus of the point of intersection of lines drawn through the foci of an ellipse parallel to conjugate diameters.

Find the area of the triangle out off from the first quadrant by the tangent to the ellipse 2x² + 3y² = 14 at the point (1, 2).

设P点在椭圆所引之二切线与其长轴之夹角为θ1,θ2,试就下列情形分别求P之轨迹.(1).tanθ1+tanθ2 为一定值.(2).cotθ1+cotθ2 为一定值.

已知椭圆C:x²/3+y²=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,若△F1AB的面积是△F2AB面积的2倍,则m=【 】

如图,已知椭圆x2/24 + y2/16 = 1,直线l:x/12 + y/8 = 1.P是l上一点,射线OP交椭圆于点R,又点Q在OP上且满足|OQ|∙|OP|=|OR|2,当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.

如图,在面积为1的△PMN中,tanM=1/2,tanN=-2.建立 适当的坐标系,求出以M,N为焦点且过点P的椭圆方程.

如果方程x2 + ky2 = 2表示焦点在y轴上的椭圆,那么实数k的取值范围是【 】

椭圆C与椭圆(x-3)2/9+(y-2)2/4=1关于直线x+y=0对称,椭圆C的方程是【 】

若l+m+n=0,试示方程式lx2+2nxy+my2+2mx+2ly+n=0表两直线.若此二直线与x轴交于A及B,与y轴交于C与D,试示AD,BC两直线之连合方程式为lx2+2lm/n xy+my2+2mx+2ly+n=0

求椭圆x²+5y²=5及圆(x+2)²+y²=5之实公切线之方程式.

求圆x²+y²=17之切线,使平行于直线x+4y=5.

A,B,C 为共线之三定点,动点 P 至A,B与 B,C 所张之角恒相等,试求 P 点之轨迹.

在平地上一点 A,测得某山顶 P 之仰角 (elevation) 为 60°,自 A 点,在平地上,向山麓前进 800 尺至 B 点.自 B 点沿一与平地倾斜 30°之斜坡,再向山顶前进 800 尺,至 C 点,在 C 点测得山顶 P之仰角为 75°.若 A,B,C,P四点在一垂直平面内,求此山之高.

于 A,B,C 三阵地测得敌机之仰角为 60°,45°,45°,今 B 地在 A 地正北 3000尺,C 地在 A 地之正西 4000 尺,求敌机之高,并讨论之.

A tower of 20.7 feet high stands at the edge of the water on a bank of a river. From a point directly opposite to the tower on the other side of the river above the water, the angle of elevation of the top of the tower is 27°17' and the angle of depression of the image of its top in the water is 38°12'. Find the width of the river.

Find the distance from the point (-1, -4) to the straight line which is drawn through (-2,6) and the perpendicular to the line joining (3,6) and (-5,-1).

若 kxy - 8x + 9y - 12 = 0 表示二条直线,求 k 值及此二直线所夹的角.

过一点 (2,1)的直线与直线 2x - 3y + 12 = 0 成45°角,求直线方程.