设P点在椭圆所引之二切线与其长轴之夹角为θ1,θ2,试就下列情形分别求P之轨迹.
(1).tanθ1+tanθ2 为一定值.
(2).cotθ1+cotθ2 为一定值.
设P点在椭圆所引之二切线与其长轴之夹角为θ1,θ2,试就下列情形分别求P之轨迹.
(1).tanθ1+tanθ2 为一定值.
(2).cotθ1+cotθ2 为一定值.
暂无答案
设椭圆方程为x2/a2 +y2/b2 =1(a>b>0),令c=,那么它的准线方程为【 】
焦点为F1(-2,0)和F2(6,0),离心率为2的双曲线的方程是____________.
如果双曲线的实半轴长为2,焦距为6,那么该双曲线的离心率为【 】
抛物线y2 = 4x的弦AB垂直于x轴,若AB的长为4,则焦点到AB的距离为______。
抛物线y2 = 8 - 4x的准线方程是________,圆心在该抛物线的顶点且与其准线相切的圆的方程是____________.
如图,已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.
直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=________.
椭圆x2/12+y2/3=1的焦点为F1和F2,点P在椭圆上.如果线段PF1的中点在y轴上,那么|PF1 |是|PF2 |的【 】
设椭圆x2/a2 +y2/b2 =1(a>b>0)的右焦点为F1右准线为l1.若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是________.
已知椭圆短轴长为2,中心与抛物线y2=4x的顶点重合,椭圆的一个焦点恰是此抛物线的焦点,求椭圆方程及其长轴的长。
已知菱形的一对内角各为60°,边长为4,以菱形对角线所在的直线为坐标轴建立直角坐标系,以菱形60°角的两个顶点为焦点,并且过菱形的另外两个顶点作椭圆,求椭圆方程.
已知椭圆x2/16+y2/4=1的左右焦点分别为F1与F2,点P在直线l:x-√3 y+8+2√3=0上.当∠F1 PF2取最大值时,比|PF1 |/(|PF2 |)的值为____________.
已知椭圆C:x2/a2 +y2/b2 =1(a>b>0)的离心率为1/3,A1,A2分别为C的左、右顶点,B为C的上顶点.若(BA1)⋅(BA2)=-1,则C的方程为【 】
过抛物线y=ax2 (a>0)的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p,q,则1/p+1/q等于【 】
已知向量=(-1,2),=(3,m),若⊥,则m=________.
若向量a=(1,1),b=(1,-1),c=(-1,2),则c=【 】
设坐标原点为O,抛物线y2=2x与过焦点的直线交于A,B两点,则∙=【 】
已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.
对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是【 】
已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,-sinβ),P3(cos(α+β),sin(α+β) ),A(1,0),则【 】
已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直, Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为__________.