问答题(2001年上海市

已知a,b,c是△ABC中∠A,∠B,∠C的对边,S是△ABC的面积,若a=4,b=5,S=5,求c的长度.

答案解析

∵S=1/2 absinC,∴sinC=/2,于是∠C=60°,或∠C=120°又c2=a2+b2-2abcosC当∠C=60°时,c2=a2+b2-ab,c=;当∠C=120°时c2=a2+b2+a...

查看完整答案

讨论

用计算器验算函数y= (x>1)的若干个值,可以猜想下列命题中的真命题只能是【 】

已知a,b为两条不同的直线,α,β为两个不同的平面且a⊥α,b⊥β,则下列命题的假命题是【 】

如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,若=a,=b,=c,则下列向量中与相等的向量是【 】

a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的【 】

据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.左下图表示我国土地沙化总面积在20世纪五六十年代、七八十年代、九十年代的变化情况.由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在右下图中图示为:

已知两个圆:x2+y2=1①与x2+(y-3)2=1②,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为________________________________.

直线y=2x-1/2与曲线(φ为参数)的交点坐标是________.

设x=sinα,且α∈[-π/6,5π/6],则arccos⁡x的取值范围是________.

在代数(4x2 - 2x - 5)(1+1/x2)5的展开式中,常数项为______.

某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种______种(结果用数值表示).

△ABC 的内角为 A, B, C 的对边分别为 a, b, c, 已知 B = 150◦.(1) 若 a = c, b = 2, 求 △ABC 的面积;(2) 若 sin A + sin C =/2 , 求 C.

△ABC 中, sin2A − sin2B − sin2C = sinBsinC.(1) 求 A;(2) 若 BC = 3, 求 △ABC 周长的最大值.

△ABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 cos2(π/2 + A) + cos A = 5/4.(1) 求 A.(2) b − c =/3a, 证明: △ABC 是直角三角形.

在 △ABC 中, cosC =2/3, AC = 4, BC = 3, 则 tanB =【 】

已知向量 a, b 满足 |a| = 5, |b| = 6, a · b = −6, 则 cos⟨a, a + b⟩ =【 】

在 ① ac =, ② csin A = 3, ③ c = b 这三个条件中任选一个, 补充在下面问题中, 若问题中的三角形存在, 求 c 的值; 若问题中的三角形不存在, 说明理由.问题: 是否存在 △ABC, 它的内角 A, B, C 的对边分别为 a, b, c, 且 sinA = sinB, C = π/6 ,__________?注: 如果选择多个条件分别解答, 按第一个解答计分.

在 △ABC 中, a + b = 11, 再从条件 ①、条件 ② 这两个条件中选择一个作为已知, 求:(I) a 的值;(II) sin C 和 △ABC 的面积.条件 ①: c = 7, cos A = -1/7;条件 ②: cos A = 1/8, cos B = 9/16.注: 如果选择条件 ① 和条件 ② 分别解答, 按第一个解答计分.

在 △ABC 中, 角 A, B, C 所对的边分别为 a, b, c. 已知 a = 2√2, b = 5, c = .(I) 求角 C 的大小;(II) 求 sin A 的值;(III) 求 sin⁡(2A+π/4) 的值.

在锐角 △ABC 中, 角 A, B, C 的对边分别为 a, b, c, 且 2bsinA − a = 0.(I) 求角 B;(II) 求 cosA + cosB + cosC 的取值范围.

在 △ABC 中, 角 A、 B、 C 的对边分别为 a、 b、 c. 已知 a = 3, c = , B = 45º. (1) 求 sinC 的值;(2) 在边 BC 上取一点 D, 使得 cos∠ADC =-4/5, 求 tan∠DAC 的值.

外国船只,除特许者外,不得进人离我海岸线 d海里的区域.设 A 及 B 是我们的观测站 , A 及 B 间的距离为s海里,海岸线是过 A 、B 的直线. 一外国船只在P点.在 A 站测得∠BAP=α ,同时在 B 站测得∠ABP=β,问及满足什么简单的三角函数值不等式,就应当向此未经特许的外国船只发出警告,命令退出我海域?

设等腰△OAB的顶角为 2θ,高为h.(1) 在△OAB内有一动点P,到三边OA,OB,AB的距离分别为|PD|,|PF|,|PE|,并且满足关系式|PD|∙|PF|=|PE|2,求P点的轨迹.(2) 在上述轨迹中定出点P的坐标,使得|PD|+|PE|=|PF|.

用解析几何方法证明三角形的三条高线交于一点.

某人要作一个三角形,要求它的三条高的长度分别是1/13 ,1/11 ,1/5 ,则此人将【 】

已知两点P(-2,2),Q(2,2)以及一条直线l:y=x.设长为的线段AB在直线l上移动.求直线PA和QB的交点M的轨迹方程.(要求把结果写成普通方程)

自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在直线的方程.

过点(1,2)且与直线2x + y - 1 = 0平行的直线方程是__________.

设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.

直线x + y - 2 = 0截圆x2 + y2 = 4得到的劣弧所对的圆心角为【 】

过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是【 】